

jupyter-repo2docker

jupyter-repo2docker is a tool to build, run, and push Docker
images from source code repositories.

repo2docker fetches a repository
(from GitHub, GitLab, Zenodo, Figshare, Dataverse installations, a Git repository or a local directory)
and builds a container image in which the code can be executed.
The image build process is based on the configuration files found in the repository.

repo2docker can be
used to explore a repository locally by building and executing the
constructed image of the repository, or as a means of building images that
are pushed to a Docker registry.

repo2docker is the tool used by BinderHub [https://binderhub.readthedocs.io]
to build images on demand.

Please report Bugs [https://github.com/jupyter/repo2docker/issues],
ask questions [https://gitter.im/jupyterhub/binder] or
contribute to the project [https://github.com/jupyter/repo2docker/blob/master/CONTRIBUTING.md].

Getting started with repo2docker

	Getting Started
	Installing repo2docker

	Using repo2docker

	Frequently Asked Questions (FAQ)

	How-to Guides
	Configure the user interface

	Choose languages for your environment

	How to automatically create a environment.yml that works with repo2docker

	Share JupyterLab Workspaces with a repository

	Build JupyterHub-ready images

	Using repo2docker as part of your Continuous Integration

	Configuring your repository
	Configuration Files

	The Reproducible Execution Environment Specification

Contribute to repo2docker

	Contributing
	Contributing to repo2docker

	Roadmap

	Architecture

	Design of repo2docker

	Common tasks

	Uncommon tasks

	Add a new buildpack

	Add a new content provider

Changelog

	Changelog
	Version 0.11.0

	Version 0.10.0

	Version 0.9.0

	Version 0.8.0

	Version 0.7.0

	Version 0.6

	Version 0.5

	Version 0.4.1

	Version 0.2

	Version 0.1.1

	Version 0.1

Getting Started

Instructions and information on how to get started with repo2docker
on your own machine. Select from the pages listed below to begin.

	Installing repo2docker
	Prerequisite: Docker

	Installing with pip

	Installing from source code

	Windows support

	Using repo2docker
	Calling repo2docker

	Building a specific branch, commit or tag

	Where to put configuration files

	Debugging repo2docker with --debug and --no-build

	Command line API

	Frequently Asked Questions (FAQ)
	How should I specify another version of Python?

	What versions of Python (or R or Julia…) are supported?

	Why is my repository is failing to build with ResolvePackageNotFound ?

	Can I add executable files to the user’s PATH?

	How do I set environment variables?

	Can I use repo2docker to bootstrap my own Dockerfile?

	Can I use repo2docker to edit a local host repository within a Docker environment?

	Why is my R shiny app not launching?

	Why does repo2docker need to exist? Why not use tool like source2image?

Installing repo2docker

repo2docker requires Python 3.5 and above on Linux and macOS. See
below for more information about Windows support.

Prerequisite: Docker

Install Docker [https://www.docker.com] as it is required
to build Docker images. The
Community Edition [https://docs.docker.com/install/],
is available for free.

Recent versions of Docker are recommended.
The latest version of Docker, 18.03, successfully builds repositories from
binder-examples [https://github.com/binder-examples].
The BinderHub [https://binderhub.readthedocs.io/] helm chart uses version
17.11.0-ce-dind. See the
helm chart [https://github.com/jupyterhub/binderhub/blob/master/helm-chart/binderhub/values.yaml#L167]
for more details.

Installing with pip

We recommend installing repo2docker with the pip tool:

python3 -m pip install jupyter-repo2docker

for the latest release. To install the most recent code from the upstream repository, run:

python3 -m pip install https://github.com/jupyter/repo2docker/archive/master.zip

For information on using repo2docker, see Using repo2docker.

Installing from source code

Alternatively, you can install repo2docker from a local source tree,
e.g. in case you are contributing back to this project:

git clone https://github.com/jupyter/repo2docker.git
cd repo2docker
python3 -m pip install -e .

That’s it! For information on using repo2docker, see
Using repo2docker.

Windows support

Windows support for repo2docker is still in the experimental stage.

An article about using Windows and the WSL [https://nickjanetakis.com/blog/setting-up-docker-for-windows-and-wsl-to-work-flawlessly] (Windows Subsytem for Linux or
Bash on Windows) provides additional information about Windows and docker.

Using repo2docker

Note

Docker [https://docs.docker.com/] must be running in
order to run repo2docker. For more information on installing
repo2docker, see Installing repo2docker.

repo2docker can build a reproducible computational environment for any repository that
follows The Reproducible Execution Environment Specification. repo2docker is called with the URL of a Git repository,
a DOI [https://en.wikipedia.org/wiki/Digital_object_identifier] from Zenodo or Figshare,
a Handle [https://en.wikipedia.org/wiki/Handle_System] or DOI from a Dataverse installation,
or a path to a local directory.

It then performs these steps:

	Inspects the repository for configuration files. These will be used to build
the environment needed to run the repository.

	Builds a Docker image with an environment specified in these configuration files.

	Launches the image to let you explore the
repository interactively via Jupyter notebooks, RStudio, or many other interfaces (optional)

	Pushes the images to a Docker registry so that it may be accessed remotely
(optional)

Calling repo2docker

repo2docker is called with this command:

jupyter-repo2docker <source-repository>

where <source-repository> is:

	a URL of a Git repository (https://github.com/binder-examples/requirements),

	a Zenodo DOI (10.5281/zenodo.1211089), or

	a path to a local directory (a/local/directory)

of the source repository you want to build.

For example, the following command will build an image of Peter Norvig’s
Pytudes [https://github.com/norvig/pytudes] repository:

jupyter-repo2docker https://github.com/norvig/pytudes

Building the image may take a few minutes.

Pytudes [https://github.com/norvig/pytudes]
uses a requirements.txt file [https://github.com/norvig/pytudes/blob/master/requirements.txt]
to specify its Python environment. Because of this, repo2docker will use
pip to install dependencies listed in this requirement.txt file, and
these will be present in the generated Docker image. To learn more about
configuration files in repo2docker visit Configuration Files.

When the image is built, a message will be output to your terminal:

Copy/paste this URL into your browser when you connect for the first time,
to login with a token:
 http://0.0.0.0:36511/?token=f94f8fabb92e22f5bfab116c382b4707fc2cade56ad1ace0

Pasting the URL into your browser will open Jupyter Notebook with the
dependencies and contents of the source repository in the built image.

Building a specific branch, commit or tag

To build a particular branch and commit, use the argument --ref and
specify the branch-name or commit-hash. For example:

jupyter-repo2docker --ref 9ced85dd9a84859d0767369e58f33912a214a3cf https://github.com/norvig/pytudes

Tip

For reproducible builds, we recommend specifying a commit-hash to
deterministically build a fixed version of a repository. Not specifying a
commit-hash will result in the latest commit of the repository being built.

Where to put configuration files

repo2docker will look for configuration files in:

	A folder named binder/ in the root of the repository.

	A folder named .binder/ in the root of the repository.

	The root directory of the repository.

repo2docker searches for these folders in order (binder/, .binder/,
root). Only configuration files in the first identified folder are considered.

Check the complete list of configuration files supported
by repo2docker to see how to configure the build process.

Note

repo2docker builds an environment with Python 3.7 by default. If you’d
like a different version, you can specify this in your
configuration files.

Debugging repo2docker with --debug and --no-build

To debug the docker image being built, pass the --debug parameter:

jupyter-repo2docker --debug https://github.com/norvig/pytudes

This will print the generated Dockerfile, build it, and run it.

To see the generated Dockerfile without actually building it,
pass --no-build to the commandline. This Dockerfile output
is for debugging purposes of repo2docker only - it can not
be used by docker directly.

jupyter-repo2docker --no-build --debug https://github.com/norvig/pytudes

Command line API

jupyter-repo2docker

Fetch a repository and build a container image

usage: jupyter-repo2docker [-h] [--config CONFIG] [--json-logs]
 [--image-name IMAGE_NAME] [--ref REF] [--debug]
 [--no-build]
 [--build-memory-limit BUILD_MEMORY_LIMIT]
 [--no-run] [--publish PORTS] [--publish-all]
 [--no-clean] [--push] [--volume VOLUMES]
 [--user-id USER_ID] [--user-name USER_NAME]
 [--env ENVIRONMENT] [--editable]
 [--target-repo-dir TARGET_REPO_DIR]
 [--appendix APPENDIX] [--subdir SUBDIR] [--version]
 [--cache-from CACHE_FROM]
 repo ...

	
repo

	Path to repository that should be built. Could be local path or a git URL.

	
cmd

	Custom command to run after building container

	
-h, --help

	show this help message and exit

	
--config <config>

	Path to config file for repo2docker

	
--json-logs

	Emit JSON logs instead of human readable logs

	
--image-name <image_name>

	Name of image to be built. If unspecified will be autogenerated

	
--ref <ref>

	If building a git url, which reference to check out. E.g., master.

	
--debug

	Turn on debug logging

	
--no-build

	Do not actually build the image. Useful in conjunction with –debug.

	
--build-memory-limit <build_memory_limit>

	Total Memory that can be used by the docker build process

	
--no-run

	Do not run container after it has been built

	
--publish <ports>, -p <ports>

	Specify port mappings for the image. Needs a command to run in the container.

	
--publish-all, -P

	Publish all exposed ports to random host ports.

	
--no-clean

	Don’t clean up remote checkouts after we are done

	
--push

	Push docker image to repository

	
--volume <volumes>, -v <volumes>

	Volumes to mount inside the container, in form src:dest

	
--user-id <user_id>

	User ID of the primary user in the image

	
--user-name <user_name>

	Username of the primary user in the image

	
--env <environment>, -e <environment>

	Environment variables to define at container run time

	
--editable, -E

	Use the local repository in edit mode

	
--target-repo-dir <target_repo_dir>

	Path inside the image where contents of the repositories are copied to,
 and where all the build operations (such as postBuild) happen.

 Defaults to ${HOME} if not set

	
--appendix <appendix>

	Appendix of Dockerfile commands to run at the end of the build.

 Can be used to customize the resulting image after all
 standard build steps finish.

	
--subdir <subdir>

	Subdirectory of the git repository to examine.

 Defaults to ‘’.

	
--version

	Print the repo2docker version and exit.

	
--cache-from <cache_from>

	List of images to try & re-use cached image layers from.

 Docker only tries to re-use image layers from images built locally,
 not pulled from a registry. We can ask it to explicitly re-use layers
 from non-locally built images by through the ‘cache_from’ parameter.

Frequently Asked Questions (FAQ)

A collection of frequently asked questions with answers. If you have a question
and have found an answer, send a PR to add it here!

How should I specify another version of Python?

One can specify a Python version in the environment.yml file of a repository
or runtime.txt file if using requirements.txt instead of environment.yml.

What versions of Python (or R or Julia…) are supported?

Python

Repo2docker officially supports the following versions of Python
(specified in your environment.yml or
runtime.txt file):

	3.7 (added in 0.7, default in 0.8)

	3.6 (default in 0.7 and earlier)

	3.5

	2.7

Additional versions may work, as long as the
base environment [https://github.com/jupyter/repo2docker/blob/master/repo2docker/buildpacks/conda/environment.yml]
can be installed for your version of Python.
The most likely source of incompatibility is if one of the packages
in the base environment is not packaged for your Python,
either because the version of the package is too new and your chosen Python is too old,
or vice versa.

I Python 2.7 is specified, a separate environment for the kernel will be
installed with Python 2. The notebook server will run in the default Python 3.7
environment.

Julia

All Julia versions since Julia 0.7.0 are supported via a Project.toml
file, and this is the recommended way to install Julia environments.
Julia versions 0.6.x and earlier are supported via a REQUIRE file.

R

The default version of R is currently R 3.6.1. You can select the version of
R you want to use by specifying it in the runtime.txt
file.

We support R versions 3.4, 3.5 and 3.6.

Why is my repository is failing to build with ResolvePackageNotFound ?

If you used conda env export to generate your environment.yml it will
generate a list of packages and versions of packages that is pinned to platform
specific versions. These very specific versions are not available in the linux
docker image used by repo2docker. A typical error message will look like
the following:

Step 39/44 : RUN conda env update -n root -f "environment.yml" && conda clean -tipsy && conda list -n root
---> Running in ebe9a67762e4
Solving environment: ...working... failed

ResolvePackageNotFound:
- jsonschema==2.6.0=py36hb385e00_0
- libedit==3.1.20181209=hb402a30_0
- tornado==5.1.1=py36h1de35cc_0
...

We recommend to use conda env export --no-builds -f environment.yml to export
your environment and then edit the file by hand to remove platform specific
packages like appnope.

See How to automatically create a environment.yml that works with repo2docker for a recipe on how to create strict exports of
your environment that will work with repo2docker.

Can I add executable files to the user’s PATH?

Yes! With a postBuild - Run code after installing the environment file, you can place any files that should be called
from the command line in the folder ~/.local/. This folder will be
available in a user’s PATH, and can be run from the command line (or as
a subsequent build step.)

How do I set environment variables?

To configure environment variables for all users of a repository use the
start configuration file.

When running repo2docker locally you can use the -e or --env command-line
flag for each variable that you want to define.

For example jupyter-repo2docker -e VAR1=val1 -e VAR2=val2 ...

Can I use repo2docker to bootstrap my own Dockerfile?

No, you can’t.

If you pass the --debug flag to repo2docker, it outputs the
intermediate Dockerfile that is used to build the docker image. While
it is tempting to copy this as a base for your own Dockerfile, that is
not supported & in most cases will not work. The --debug output is
just our intermediate generated Dockerfile, and is meant to be built
in a very specific way. Hence the output of --debug can not be
built with a normal docker build -t . or similar traditional
docker command.

Check out the binder-examples [http://github.com/binder-examples/] GitHub
organization for example repositories you can copy & modify for your own use!

Can I use repo2docker to edit a local host repository within a Docker environment?

Yes: use the --editable or -E flag (don’t confuse this with
the -e flag for environment variables), and run repo2docker on a
local repository:

repo2docker -E my-repository/

This builds a Docker container from the files in that repository
(using, for example, a requirements.txt or install.R file),
then runs that container, while connecting the working directory
inside the container to the local repository outside the
container. For example, in case there is a notebook file (.ipynb),
this will open in a local webbrowser, and one can edit it and save
it. The resulting notebook is updated in both the Docker container and
the local repository. Once the container is exited, the changed file
will still be in the local repository.

This allows for easy testing of the container while debugging some
items, as well as using a fully customizable container to edit
notebooks (among others).

Note

Editable mode is a convenience option that will bind the
repository to the container working directory (usually
$HOME). If you need to mount to a different location in
the container, use the --volumes option instead. Similarly,
for a fully customized user Dockerfile, this option is not
guaranteed to work.

Why is my R shiny app not launching?

If you are trying to run an R shiny app using the /shiny/folder_containing_shiny
url option, but the launch returns “The application exited during initialization.”,
there might be something wrong with the specification of the app. One way of debugging
the app in the container is by running the rstudio url, open either the ui or
server file for the app, and run the app in the container rstudio. This way you can
see the rstudio logs as it tries to initialise the shiny app. If you a missing a
package or other dependency for the container, this will be obvious at this stage.

Why does repo2docker need to exist? Why not use tool like source2image?

The Jupyter community believes strongly in building on top of pre-existing tools whenever
possible (this is why repo2docker buildpacks largely build off of patterns that already
exist in the data analytics community). We try to perform due-diligence and search for
other communities to leverage and help, but sometimes it makes the most sense to build
our own new tool. In the case of repo2docker, we spent time integrating with a pre-existing
tool called source2image [https://github.com/openshift/source-to-image/].
This is an excellent open tool for containerization, but we
ultimately decided that it did not fit the use-case we wanted to address. For more information,
here [https://github.com/yuvipanda/words/blob/fd096dd49d87e624acd8bdf6d13c0cecb930bb3f/content/post/why-not-s2i.md] is a short blog post about the decision and the reasoning behind it.

How-to Guides

Short, actionable guides that cover specific topics with repo2docker.
Select from the pages listed below to get started.

How-To guides

	Configure the user interface
	JupyterLab

	nteract

	RStudio

	Shiny

	Stencila

	Choose languages for your environment
	Python

	The R Language

	Julia

	Languages not covered here

	Using multiple languages at once

	How to automatically create a environment.yml that works with repo2docker
	The challenge

	The solution

	Share JupyterLab Workspaces with a repository

	Build JupyterHub-ready images

	Using repo2docker as part of your Continuous Integration
	Getting Started

Configure the user interface

You can build several user interfaces into the resulting Docker image.
This is controlled with various configuration files.

JupyterLab

You do not need any extra configuration in order to allow the use
of the JupyterLab interface. You can launch JupyterLab from within a user
session by opening the Jupyter Notebook and appending /lab to the end of the URL
like so:

http(s)://<server:port>/lab

To switch back to the classic notebook, add /tree to the URL like so:

http(s)://<server:port>/tree

For example, the following Binder URL will open the
pyTudes repository [https://github.com/norvig/pytudes]
and begin a JupyterLab session in the ipynb folder:

https://mybinder.org/v2/gh/norvig/pytudes/master?urlpath=lab/tree/ipynb

The /tree/ipynb above is how JupyterLab directs you to a specific file
or folder.

To learn more about URLs in JupyterLab and Jupyter Notebook, visit
starting JupyterLab [http://jupyterlab.readthedocs.io/en/latest/getting_started/starting.html].

nteract

nteract is a notebook interface [https://nteract.io/] built with React.
It is similar to a more feature-filled version of the traditional
Jupyter Notebook interface.

nteract comes pre-installed in any session that has been built from
a Python repository.

You can launch nteract from within a user
session by replacing /tree with /nteract at the end of a notebook
server’s URL like so:

http(s)://<server:port>/nteract

For example, the following Binder URL will open the
pyTudes repository [https://github.com/norvig/pytudes]
and begin an nteract session in the ipynb folder:

https://mybinder.org/v2/gh/norvig/pytudes/master?urlpath=nteract/tree/ipynb

The /tree/ipynb above is how nteract directs you to a specific file
or folder.

To learn more about nteract, visit the nteract website [https://nteract.io/about].

RStudio

The RStudio user interface is automatically enabled if a configuration file for
R is detected (i.e. an R version specified in runtime.txt). If this is detected,
RStudio will be accessible by appending /rstudio to the URL, like so:

http(s)://<server:port>/rstudio

For example, the following Binder link will open an RStudio session in
the R demo repository [https://github.com/binder-examples/r].

http://mybinder.org/v2/gh/binder-examples/r/master?urlpath=rstudio

Shiny

Shiny lets you create interactive visualizaions with R [https://shiny.rstudio.com/].
Shiny is automatically enabled if a configuration file for
R is detected (i.e. an R version specified in runtime.txt). If
this is detected, Shiny will be accessible by appending
/shiny/<folder-w-shiny-files> to the URL, like so:

http(s)://<server:port>/shiny/bus-dashboard

This assumes that a folder called bus-dashboard exists in the root
of the repository, and that it contains all of the files needed to run
a Shiny app.

For example, the following Binder link will open a Shiny session in
the R demo repository [https://github.com/binder-examples/r].

http://mybinder.org/v2/gh/binder-examples/r/master?urlpath=shiny/bus-dashboard/

Stencila

The Stencila user interface is automatically enabled if a Stencila document (i.e.
a file manifest.xml) is detected. Stencila will be accessible by appending
/stencila to the URL, like so:

http(s)://<server:port>/stencila

The editor will open the Stencila document corresponding to the last manifest.xml
found in the file tree. If you want to open a different document, you can configure
the path in the URL parameter archive:

http(s)://<server:port>/stencila/?archive=other-dir

Choose languages for your environment

You can define many different languages in your configuration files. This
page describes how to use some of the more common ones.

Python

Your environment will have Python (and specified dependencies) installed when
you use one of the following configuration files:

	requirements.txt

	environment.yml

Note

By default, the environment will have Python 3.7.

Changed in version 0.8: Upgraded default Python from 3.6 to 3.7.

Specifying a version of Python

To specify a specific version of Python, you have two options:

	Use environment.yml. Conda environments let you define
the Python version in environment.yml.
To do so, add python=X.X to your dependencies section, like so:

name: python 2.7
dependencies:
 - python=2.7
 - numpy

	Use runtime.txt with requirements.txt.
If you are using requirements.txt instead of environment.yml,
you can specify the Python runtime version in a separate file called runtime.txt.
This file contains a single line of the following form:

python-X.X

For example:

python-3.6

The R Language

To ensure that R is installed, you must specify a version of R in a runtime.txt
file. This takes the following form:

r-YYYY-MM-DD

The date corresponds to the state of the MRAN repository at this day. Make sure
that you choose a day with the desired version of your packages. For example,
to use the MRAN repository on January 1st, 2018, add this line to runtime.txt:

r-2018-01-01

Note that to install specific packages with the R environment, you should
use the install.R configuration file.

Julia

To build an environment with Julia, include a configuration file called
Project.toml. The format of this file is documented at
the Julia Pkg.jl documentation [https://julialang.github.io/Pkg.jl/v1/].
To specify a specific version of Julia to install, put a Julia version in the
[compat] section of the Project.toml file, as described
here: https://julialang.github.io/Pkg.jl/v1/compatibility/.

Languages not covered here

If a language is not “officially” supported by a build pack, it can often be
installed with a postBuild script. This will run arbitrary bash commands,
and can be used to download / install a language.

Using multiple languages at once

It may also be possible to combine multiple languages in a single environment.
The details on how to accomplish this with all possible combinations are outside
the scope of this guide. However we recommend that you take a look at the
Multi-Language Demo [https://github.com/binder-examples/multi-language-demo]
repository for some inspiration.

How to automatically create a environment.yml that works with repo2docker

This how-to explains how to create a environment.yml that specifies all
installed packages and their precise versions from your environment.

The challenge

conda env export -f environment.yml creates a strict export of all packages.
This is the most robust for reproducibility, but it does bake in potential
platform-specific packages, so you can only use an exported environment on the
same platform.

repo2docker uses a linux based image as the starting point for every docker
image it creates. However a lot of people use OSX or Windows as their day to
day operating system. This means that the environment.yml created by a strict
export will not work with error messages saying that certain packages can not
be resolved (ResolvePackageNotFound).

The solution

Follow this procedure to create a strict export of your environment that will
work with repo2docker and sites like mybinder.org [https://mybinder.org/].

We will launch a terminal inside a basic docker image, install the packages
you need and then perform a strict export of the environment.

	install repo2docker on your computer by following Installing repo2docker

	in a terminal launch a basic repository
repo2docker https://github.com/binder-examples/conda-freeze
inside repo2docker

	open the URL printed at the end in a browser, the URL should look like
http://127.0.0.1:61037/?token=30e61ec80bda6dd0d14805ea76bb59e7b0cd78b5d6b436f0

	open a terminal by clicking “New -> Terminal” next to the “Upload” button on the
right hand side of the webpage

	install the packages your project requires with conda install <yourpackages>

	use conda env export -n root to print the environment

	copy and paste the environment you just printed into a environment.yml in
your projects repository

	close your browser tabs and exit the repo2docker session by pressing Ctrl-C.

This will give you a strict export of your environment that precisely pins the
versions of packages in your environment based on a linux environment.

Share JupyterLab Workspaces with a repository

JupyterLab uses workspaces [https://jupyterlab.readthedocs.io/en/stable/user/urls.html#managing-workspaces-ui]
to save the current state of windows, settings, and documents that
are open in a JupyterLab session. It is a way to persist the general
configuration over time.

It is possible to export JupyterLab workspaces and load them in to
another JupyterLab installation in order to share a workspace with
someone else.

In order to package your workspace with a repository, we recommend
following the steps in this example repository:

https://github.com/ian-r-rose/binder-workspace-demo/

Build JupyterHub-ready images

JupyterHub [https://github.com/jupyterhub/jupyterhub] allows multiple
users to collaborate on a shared Jupyter server. repo2docker can build
Docker images that can be shared within a JupyterHub deployment. For example,
mybinder.org [https://mybinder.org] uses JupyterHub and repo2docker
to allow anyone to build a Docker image of a git repository online and
share an executable version of the repository with a URL to the built image.

To build JupyterHub [https://github.com/jupyterhub/jupyterhub]-ready Docker images with repo2docker, the
version of your JupterHub deployment must be included in the
environment.yml or requirements.txt of the git repositories you
build.

If your instance of JupyterHub uses DockerSpawner, you will need to set its
command to run jupyterhub-singleuser by adding this line in your
configuration file:

c.DockerSpawner.cmd = ['jupyterhub-singleuser']

Using repo2docker as part of your Continuous Integration

We’ve created for you the continuous-build [https://www.github.com/binder-examples/continuous-build/]
repository so that you can push a Docker [https://docs.docker.com/] container
to Docker Hub [https://hub.docker.com/] directly from a GitHub repository
that has a Jupyter notebook. Here are instructions to do this.

Getting Started

Today you will be doing the following:

	Fork and clone the continuous-build GitHub repository to obtain the hidden .circleci folder.

	Creating an image repository on Docker Hub

	Connecting your repository to CircleCI

	Push, commit, or create a pull request to trigger a build.

You don’t need to install any dependencies on your host to build the container, it will be done
on a continuous integration server, and the container built and available to you
to pull from Docker Hub.

Step 1. Clone the Repository

First, fork the continuous-build [https://www.github.com/binder-examples/continuous-build/] GitHub
repository to your account, and clone the branch via either:

git clone https://www.github.com/<username>/continuous-build

or

git clone git@github.com:<username>/continuous-build.git

Step 2. Choose your Configuration

The hidden folder .circleci/config.yml has instructions for CircleCI [https://circleci.com/dashboard/]
to automatically discover and build your repo2docker Jupyter notebook container.
The default template provided in the repository in this folder will do the most basic steps,
including:

	Clone the repository with the notebook that you specify

	Build a Docker image

	Push the build image to Docker Hub

This repository aims to provide templates for your use.
If you have a request for a new template, please
let us know [https://www.github.com/binder-examples/continuous-build/issues/].
We will add templates as they are requested to do additional tasks like test containers, run
nbconvert, etc.

Thus, if I have a repository named myrepo and I want to use the default configuration on circleCI,
I would copy it there from the continuous-build folder. In the example below, I’m
creating a new folder called “myrepo” and then copying the entire folder there:

mkdir -p myrepo
cp -R continuous-build/.circleci myrepo/

You would then logically create a GitHub repository in the “myrepo” folder,
add the circleci configuration folder, and continue on to the next steps.

cd myrepo
git init
git add .circleci

Step 3. Docker Hub

Go to Docker Hub [https://hub.docker.com/], log in, and click the big blue
button that says “create repository” (not an automated build). Choose an organization
and name that you like (in the traditional format <ORG>/<NAME>), and
remember it! We will be adding it, along with your
Docker credentials, to be encrypted CircleCI environment variables.

Step 4. Connect to CircleCI

If you navigate to the main app page [https://circleci.com/dashboard/] you
should be able to click “Add Projects” and then select your repository. If you don’t
see it on the list, then select a different organization in the top left. Once
you find the repository, you can click the button to “Start Building” and accept
the defaults.

Before you push or trigger a build, let’s set up the following environment variables.
Also in the project interface on CirleCi, click the gears icon next to the project
name to get to your project settings. Under settings, click on the “Environment
Variables” tab. In this section, you want to define the following:

	CONTAINER_NAME should be the name of the Docker Hub repository you just created.

	DOCKER_TAG is the tag you want to use. If not defined, will use first 10 characters of commit.

	DOCKER_USER and DOCKER_PASS should be your credentials (to allowing pushing)

	REPO_NAME should be the full GitHub url (or other) of the repository with the notebook. This doesn’t have to coincide with the repository you are using to do the build (e.g., “myrepo” in our example).

If you don’t define the CONTAINER_NAME it will default to be the repository where it is
building from, which you should only do if the Docker Hub repository is named equivalently.
If you don’t define either of the variables from step 3. for the Docker credentials, your
image will build but not be pushed to Docker Hub. Finally, if you don’t define the REPO_NAME
it will again use the name of the repository defined for the CONTAINER_NAME.

Step 5. Push Away, Merrill!

Once the environment variables are set up, you can push or issue a pull request
to see circle build the workflow. Remember that you only need the .circleci/config.yml
and not any other files in the repository. If your notebook is hosted in the same repository,
you might want to add these, along with your requirements.txt, etc.

Tip

By default, new builds on CircleCI will not build for
pull requests and you can change this default in the settings. You can easily add
filters (or other criteria and actions) to be performed during or after the build
by editing the .circleci/config.yml file in your repository.

Step 5. Use Your Container!

You should then be able to pull your new container, and run it! Here is an example:

docker pull <ORG>/<NAME>
docker run -it --name repo2docker -p 8888:8888 <ORG>/<NAME> jupyter notebook --ip 0.0.0.0

For a pre-built working example, try the following:

docker pull vanessa/repo2docker
docker run -it --name repo2docker -p 8888:8888 vanessa/repo2docker jupyter notebook --ip 0.0.0.0

You can then enter the url and token provided in the browser to access your notebook. When you are done and need to stop and remove the container:

docker stop repo2docker
docker rm repo2docker

Configuring your repository

Information about configuring your repository to work with repo2docker,
and controlling elements of the built environment using configuration files.

Complete list of configuration files

	Configuration Files
	environment.yml - Install a Python environment

	Pipfile and/or Pipfile.lock - Install a Python environment

	requirements.txt - Install a Python environment

	setup.py - Install Python packages

	Project.toml - Install a Julia environment

	REQUIRE - Install a Julia environment (legacy)

	install.R - Install an R/RStudio environment

	apt.txt - Install packages with apt-get

	DESCRIPTION - Install an R package

	manifest.xml - Install Stencila

	postBuild - Run code after installing the environment

	start - Run code before the user sessions starts

	runtime.txt - Specifying runtimes

	default.nix - the nix package manager

	Dockerfile - Advanced environments

	The Reproducible Execution Environment Specification

Configuration Files

repo2docker looks for configuration files in the repository being built
to determine how to build it. In general, repo2docker uses the same
configuration files as other software installation tools,
rather than creating new custom configuration files.

A number of repo2docker configuration files can be combined to compose more
complex setups.

The binder examples [https://github.com/binder-examples] organization on
GitHub contains a list of sample repositories for common configurations
that repo2docker can build with various configuration files such as
Python and R installation in a repository.

A list of supported configuration files (roughly in the order of build priority)
can be found on this page (and to the right).

environment.yml - Install a Python environment

environment.yml is the standard configuration file used by conda [https://conda.io]
that lets you install any kind of package,
including Python, R, and C/C++ packages.
repo2docker does not use your environment.yml to create and activate a new conda environment.
Rather, it updates a base conda environment defined here [https://github.com/jupyter/repo2docker/blob/master/repo2docker/buildpacks/conda/environment.yml] with the packages listed in your environment.yml.
This means that the environment will always have the same default name, not the name
specified in your environment.yml.

Note

You can install files from pip in your environment.yml as well.
For example, see the binder-examples environment.yml [https://github.com/binder-examples/python-conda_pip/blob/master/environment.yml]
file.

You can also specify which Python version to install in your built environment
with environment.yml. By default, repo2docker installs
Python 3.7 with your environment.yml unless you include the version of
Python in this file. conda supports all versions of Python,
though repo2docker support is best with Python 3.7, 3.6, 3.5 and 2.7.

Warning

If you include a Python version in a runtime.txt file in addition to your
environment.yml, your runtime.txt will be ignored.

Pipfile and/or Pipfile.lock - Install a Python environment

pipenv [https://github.com/pypa/pipenv/] allows you to manage a virtual
environment Python dependencies. When using pipenv, you end up with
Pipfile and Pipfile.lock files. The lock file contains explicit details
about the packages that has been installed that met the criteria within the
Pipfile.

If both Pipfile and Pipfile.lock are found by repo2docker, the former
will be ignored in favor of the lock file. Also note that these files
distinguish packages and development packages and that repo2docker will install
both kinds.

requirements.txt - Install a Python environment

This specifies a list of Python packages that should be installed in your
environment. Our
requirements.txt example [https://github.com/binder-examples/requirements/blob/master/requirements.txt]
on GitHub shows a typical requirements file.

setup.py - Install Python packages

To install your repository like a Python package, you may include a
setup.py file. repo2docker installs setup.py files by running
pip install -e ..

Project.toml - Install a Julia environment

A Project.toml (or JuliaProject.toml) file can specify both the
version of Julia to be used and a list of Julia packages to be installed.
If a Manifest.toml is present, it will determine the exact versions
of the Julia packages that are installed.

REQUIRE - Install a Julia environment (legacy)

A REQUIRE file can specify both the version of Julia to be used and
which Julia packages should be used. The use of REQUIRE is only
recommended for pre 1.0 Julia versions. The recommended way of installing
a Julia environment that uses Julia 1.0 or newer is to use a Project.toml
file. If both a REQUIRE and a Project.toml file are detected,
the REQUIRE file is ignored. To see an example of a Julia repository
with REQUIRE and environment.yml, visit
binder-examples/julia-python [https://github.com/binder-examples/julia-python].

install.R - Install an R/RStudio environment

This is used to install R libraries pinned to a specific snapshot on
MRAN [https://mran.microsoft.com/documents/rro/reproducibility].
To set the date of the snapshot add a runtime.txt.
For an example install.R file, visit our example install.R file [https://github.com/binder-examples/r/blob/master/install.R].

apt.txt - Install packages with apt-get

A list of Debian packages that should be installed. The base image used is usually the latest released
version of Ubuntu.

We use apt.txt, for example, to install LaTeX in our
example apt.txt for LaTeX [https://github.com/binder-examples/latex/blob/master/apt.txt].

DESCRIPTION - Install an R package

To install your repository like an R package, you may include a
DESCRIPTION file. repo2docker installs the package and dependencies
from the DESCRIPTION by running devtools:install_git(".").

You also need to have a runtime.txt file that is formatted as
r-<YYYY>-<MM>-<DD>, where YYYY-MM-DD is a snapshot of MRAN that will be
used for your R installation.

manifest.xml - Install Stencila

Stencila [https://stenci.la/] is an open source office suite for reproducible research.
It is powered by the open file format Dar [https://github.com/substance/dar].

If your repository contains a Stencila document, repo2docker detects it based on the file manifest.xml.
The required execution contexts [https://stenci.la/learn/intro.html] are extracted from a Dar article (i.e.
files named *.jats.xml).

You may also have a runtime.txt and/or an install.R to manually configure your R installation.

To see example repositories, visit our
Stencila with R [https://github.com/binder-examples/stencila-r/] and
Stencila with Python [https://github.com/binder-examples/stencila-py] examples.

postBuild - Run code after installing the environment

A script that can contain arbitrary commands to be run after the whole repository has been built. If you
want this to be a shell script, make sure the first line is #!/bin/bash.

An example use-case of postBuild file is JupyterLab’s demo on mybinder.org.
It uses a postBuild file in a folder called binder to prepare
their demo for binder [https://github.com/jupyterlab/jupyterlab-demo/blob/master/binder/postBuild].

start - Run code before the user sessions starts

A script that can contain simple commands to be run at runtime (as an
ENTRYPOINT [https://docs.docker.com/engine/reference/builder/#entrypoint]
to the docker container). If you want this to be a shell script, make sure the
first line is #!/bin/bash. The last line must be exec "$@"
or equivalent.

Use this to set environment variables that software installed in your container
expects to be set. This script is executed each time your binder is started and
should at most take a few seconds to run.

If you only need to run things once during the build phase use postBuild - Run code after installing the environment.

runtime.txt - Specifying runtimes

Sometimes you want to specify the version of the runtime
(e.g. the version of Python or R),
but the environment specification format will not let you specify this information
(e.g. requirements.txt or install.R).
For these cases, we have a special file, runtime.txt.

Note

runtime.txt is only supported when used with environment specifications
that do not already support specifying the runtime
(when using environment.yml for conda or Project.toml for Julia,
runtime.txt will be ignored).

To use python-2.7: add python-2.7 in runtime.txt file.
The repository will run in an env with
Python 2 installed. To see a full example repository, visit our
Python2 example [https://github.com/binder-examples/python2_runtime/blob/master/runtime.txt].

repo2docker uses R libraries pinned to a specific snapshot on
MRAN [https://mran.microsoft.com/documents/rro/reproducibility].
You need to have a runtime.txt file that is formatted as
r-<RVERSION>-<YYYY>-<MM>-<DD>, where YYYY-MM-DD is a snapshot at MRAN that will be
used for installing libraries. You can set RVERSION to 3.4, 3.5 or 3.6 to select
the version of R you want to use. If you do not specify a R version the latest
released version will be used (currently R 3.6). You can also specify the exact
patch release you want to use for the 3.5 and 3.6 series.

To see an example R repository, visit our R
example in binder-examples [https://github.com/binder-examples/r/blob/master/runtime.txt].

default.nix - the nix package manager

Specify packages to be installed by the nix package manager [https://github.com/NixOS/nixpkgs].
When you use this config file all other configuration files (like requirements.txt)
that specify packages are ignored. When using nix you have to specify all
packages and dependencies explicitly, including the Jupyter notebook package that
repo2docker expects to be installed. If you do not install Jupyter explicitly
repo2docker will no be able to start your container.

nix-shell [https://nixos.org/nix/manual/#sec-nix-shell] is used to evaluate
a nix expression written in a default.nix file. Make sure to
pin your nixpkgs [https://discourse.nixos.org/t/nixops-pinning-nixpkgs/734]
to produce a reproducible environment.

To see an example repository visit
nix binder example [https://github.com/binder-examples/nix].

Dockerfile - Advanced environments

In the majority of cases, providing your own Dockerfile is not necessary as the base
images provide core functionality, compact image sizes, and efficient builds. We recommend
trying the other configuration files before deciding to use your own Dockerfile.

With Dockerfiles, a regular Docker build will be performed.

Note

If a Dockerfile is present, all other configuration files will be ignored.

See the Advanced Binder Documentation [https://mybinder.readthedocs.io/en/latest/tutorials/dockerfile.html] for
best-practices with Dockerfiles.

The Reproducible Execution Environment Specification

repo2docker scans a repository for particular Configuration Files, such
as requirements.txt or REQUIRE. The collection of files, their contents,
and the resulting actions that repo2docker takes is known
as the Reproducible Execution Environment Specification (or REES).

The goal of the REES is to automate and encourage existing community best practices
for reproducible computational environments. This includes installing pacakges using
community-standard specification files and their corresponding tools,
such as requirements.txt (with pip), REQUIRE (with Julia), or
apt.txt (with apt). While repo2docker automates the
creation of the environment, a human should be able to look at a REES-compliant
repository and reproduce the environment using common, clear steps without
repo2docker software.

Currently, the definition of the REE Specification is the following:

Any directory containing zero or more files from the Configuration Files list is a
valid reproducible execution environment as defined by the REES. The
configuration files have to all be placed either in the root of the
directory, in a binder/ sub-directory or a .binder/ sub-directory.

For example, the REES recognises requirements.txt as a valid config file.
The file format is as defined by the requirements.txt standard of the Python
community. A REES-compliant tool will install a Python interpreter (of unspecified version)
and perform the equivalent action of pip install -r requirements.txt so that the
user can afterwards run python and use the packages installed.

Contributing

The repo2docker community is welcoming of all kinds of help and
participation from others. Below are a few ways that you can get involved,
as well as resources for understanding the structure and design of the
repo2docker package.

	Contributing to repo2docker
	Types of contribution

	Process for making a contribution

	Guidelines to getting a Pull Request merged

	Setting up for Local Development
	Clone the repository

	Set up a local virtual environment

	Code formatting

	Verify that docker is installed and running

	Building the documentation locally

	Roadmap
	Using the roadmap
	Sharing Feedback on the Roadmap

	What do we mean by “next step”?

	Reviewing and Updating the Roadmap

	The roadmap proper
	Project vision

	Now

	Soon

	Later

	Architecture
	Buildpacks
	Detect

	Build base environment

	Copy repository contents

	Assemble repository environment

	Push

	Run

	ContentProviders

	Design of repo2docker
	Deterministic output

	Reproducibility and version stability

	Unix principles “do one thing well”

	Composability

	Pareto principle (The 80-20 Rule)

	Common tasks
	Running tests

	Update and Freeze BuildPack Dependencies
	Conda dependencies

	Make a Pull Request

	Creating a Release
	Confirm that the changelog is ready

	Create a new tag and push it

	Create a new release on the GitHub repository

	Update the change log

	Keeping the Pipfile and requirements files up to date

	Uncommon tasks
	Compare generated Dockerfiles between repo2docker versions

	Add a new buildpack
	Criteria to balance and consider
	Adding libraries or UI to existing buildpacks

	Add a new content provider

Contributing to repo2docker

Thank you for thinking about contributing to repo2docker!
This is an open source project that is developed and maintained entirely by volunteers.
Your contribution is integral to the future of the project.
THANK YOU!

Types of contribution

There are many ways to contribute to repo2docker:

	Update the documentation.
If you’re reading a page or docstring and it doesn’t make sense (or doesn’t exist!), please let us know by opening a bug report.
It’s even more amazing if you can give us a suggested change.

	Fix bugs or add requested features.
Have a look through the issue tracker [https://github.com/jupyter/repo2docker/issues] and see if there are any tagged as “help wanted” [https://github.com/jupyter/repo2docker/issues?q=is%3Aissue+is%3Aopen+label%3A%22help+wanted%22].
As the label suggests, we’d love your help!

	Report a bug.
If repo2docker isn’t doing what you thought it would do then open a bug report [https://github.com/jupyter/repo2docker/issues/new?template=bug_report].
That issue template will ask you a few questions described in more detail below.

	Suggest a new feature.
We know that there are lots of ways to extend repo2docker!
If you’re interested in adding a feature then please open a feature request [https://github.com/jupyter/repo2docker/issues/new?template=feature_request].
That issue template will ask you a few questions described in detail below.

	Review someone’s Pull Request.
Whenever somebody proposes changes to the repo2docker codebase, the community reviews
the changes, and provides feedback, edits, and suggestions. Check out the
open pull requests [https://github.com/jupyter/repo2docker/pulls?q=is%3Apr+is%3Aopen+sort%3Aupdated-desc]
and provide feedback that helps improve the PR and get it merged. Please keep your
feedback positive and constructive!

	Tell people about repo2docker.
As we said above, repo2docker is built by and for its community.
If you know anyone who would like to use repo2docker, please tell them about the project!
You could give a talk about it, or run a demonstration.
The sky is the limit :rocket::star2:.

If you’re not sure where to get started, then please come and say hello in our Gitter channel [https://gitter.im/jupyterhub/binder], or open an discussion thread at the Jupyter discourse forum [https://discourse.jupyter.org/].

Process for making a contribution

This outlines the process for getting changes to the repo2docker project merged.

	Identify the correct issue template: bug report [https://github.com/jupyter/repo2docker/issues/new?template=bug_report] or feature request [https://github.com/jupyter/repo2docker/issues/new?template=feature_request].

Bug reports (examples [https://github.com/jupyter/repo2docker/issues?q=is%3Aissue+is%3Aopen+label%3Abug], new issue [https://github.com/jupyter/repo2docker/issues/new?template=bug_report]) will ask you for a description of the problem, the expected behaviour, the actual behaviour, how to reproduce the problem, and your personal set up.
Bugs can include problems with the documentation, or code not running as expected.

It is really important that you make it easy for the maintainers to reproduce the problem you’re having.
This guide on creating a minimal, complete and verifiable example [https://stackoverflow.com/help/mcve] is a great place to start.

Feature requests (examples [https://github.com/jupyter/repo2docker/labels/needs%3A%20discussion], new issue [https://github.com/jupyter/repo2docker/issues/new?template=feature_request]) will ask you for the proposed change, any alternatives that you have considered, a description of who would use this feature, and a best-guess of how much work it will take and what skills are required to accomplish.

Very easy feature requests might be updates to the documentation to clarify steps for new users.
Harder feature requests may be to add new functionality to the project and will need more in depth discussion about who can complete and maintain the work.

Feature requests are a great opportunity for you to advocate for the use case you’re suggesting.
They help others understand how much effort it would be to integrate the work,and - if you’re successful at convincing them that this effort is worth it - make it more likely that they to choose to work on it with you.

	Open an issue.
Getting consensus with the community is a great way to save time later.

	Make edits in your fork [https://help.github.com/en/articles/fork-a-repo] of the repo2docker repository [https://github.com/jupyter/repo2docker].

	Make a pull request [https://help.github.com/en/articles/about-pull-requests].
Read the next section for guidelines for both reviewers and contributors on merging a PR.

	Edit the changelog by appending your feature / bug fix to the development version.

	Wait for a community member to merge your changes.
Remember that someone else must merge your pull request.
That goes for new contributors and long term maintainers alike.

	(optional) Deploy a new version of repo2docker to mybinder.org by following these steps [http://mybinder-sre.readthedocs.io/en/latest/deployment/how.html]

Guidelines to getting a Pull Request merged

These are not hard rules to be enforced by 🚓 but they are suggestions written by the repo2docker maintainers to help complete your contribution as smoothly as possible for both you and for them.

	Create a PR as early as possible, marking it with [WIP] while you work on it.
This avoids duplicated work, lets you get high level feedback on functionality or API changes, and/or helps find collaborators to work with you.

	Keep your PR focused.
The best PRs solve one problem.
If you end up changing multiple things, please open separate PRs for the different conceptual changes.

	Add tests to your code.
PRs will not be merged if Travis is failing.

	Apply PEP8 [https://www.python.org/dev/peps/pep-0008/] as much as possible, but not too much.
If in doubt, ask.

	Use merge commits instead of merge-by-squashing/-rebasing.
This makes it easier to find all changes since the last deployment git log --merges --pretty=format:"%h %<(10,trunc)%an %<(15)%ar %s" <deployed-revision>.. and your PR easier to review.

	Make it clear when your PR is ready for review.
Prefix the title of your pull request (PR) with [MRG] if the contribution is complete and should be subjected to a detailed review.

	Enter your changes into the changelog in docs/source/changelog.rst.

	Use commit messages to describe why you are proposing the changes you are proposing.

	Try to not rush changes (the definition of rush depends on how big your changes are).
Remember that everyone in the repo2docker team is a volunteer and we can not (nor would we want to) control their time or interests.
Wait patiently for a reviewer to merge the PR.
(Remember that someone else must merge your PR, even if you have the admin rights to do so.)

Setting up for Local Development

To develop & test repo2docker locally, you need:

	Familiarity with using a command line terminal

	A computer running macOS / Linux

	Some knowledge of git

	At least python 3.6

	Your favorite text editor

	A recent version of Docker Community Edition [https://www.docker.com/community-edition]

Clone the repository

First, you need to get a copy of the repo2docker git repository on your local
disk. Fork the repository on GitHub, then clone it to your computer:

git clone https://github.com/<your-username>/repo2docker

This will clone repo2docker into a directory called repo2docker. You can
make that your current directory with cd repo2docker.

Set up a local virtual environment

After cloning the repository, you should set up an
isolated environment to install libraries required for running / developing
repo2docker.

There are many ways to do this but here we present you with two approaches: virtual environment or pipenv.

	Using virtual environment

python3 -m venv .
source bin/activate
pip3 install -e .
pip3 install -r dev-requirements.txt
pip3 install -r docs/doc-requirements.txt
pip3 install black

This should install all the libraries required for testing & running repo2docker!

	Using pipenv

Note that you will need to install pipenv first using pip3 install pipenv.
Then from the root directory of this project you can use the following commands:

pipenv install --dev

This should install both the dev and docs requirements at once!

Code formatting

We use black [https://black.readthedocs.io/en/stable/] as code formatter to
get a consistent layout for all the code in this project. This makes reading
the code easier.

To format your code run black . in the top-level directory of this repository.
Many editors have plugins that will automatically apply black as you edit files.

We also have a pre-commit hook setup that will check that code is formatted
according to black’s style guide. You can activate it with pre-commit install.

As part of our continuous integration tests we will check that code is
formatted properly and the tests will fail if this is not the case.

Verify that docker is installed and running

If you do not already have Docker [https://www.docker.com/], you should be able
to download and install it for your operating system using the links from the
official website [https://www.docker.com/community-edition]. After you have
installed it, you can verify that it is working by running the following commands:

docker version

It should output something like:

Client:
 Version: 17.09.0-ce
 API version: 1.32
 Go version: go1.8.3
 Git commit: afdb6d4
 Built: Tue Sep 26 22:42:45 2017
 OS/Arch: linux/amd64

Server:
 Version: 17.09.0-ce
 API version: 1.32 (minimum version 1.12)
 Go version: go1.8.3
 Git commit: afdb6d4
 Built: Tue Sep 26 22:41:24 2017
 OS/Arch: linux/amd64
 Experimental: false

Then you are good to go!

Building the documentation locally

If you only changed the documentation, you can also build the documentation locally using sphinx .

pip install -r docs/doc-requirements.txt

cd docs/
make html

Then open the file docs/build/html/index.html in your browser.

Roadmap

This roadmap collects “next steps” for repo2docker. It is about creating a
shared understanding of the project’s vision and direction amongst
the community of users, contributors, and maintainers.
The goal is to communicate priorities and upcoming release plans.
It is not a aimed at limiting contributions to what is listed here.

Using the roadmap

Sharing Feedback on the Roadmap

All of the community is encouraged to provide feedback as well as share new
ideas with the community. Please do so by submitting an issue. If you want to
have an informal conversation first use one of the other communication channels.
After submitting the issue, others from the community will probably
respond with questions or comments they have to clarify the issue. The
maintainers will help identify what a good next step is for the issue.

What do we mean by “next step”?

When submitting an issue, think about what “next step” category best describes
your issue:

	now, concrete/actionable step that is ready for someone to start work on.
These might be items that have a link to an issue or more abstract like
“decrease typos and dead links in the documentation”

	soon, less concrete/actionable step that is going to happen soon,
discussions around the topic are coming close to an end at which point it can
move into the “now” category

	later, abstract ideas or tasks, need a lot of discussion or
experimentation to shape the idea so that it can be executed. Can also
contain concrete/actionable steps that have been postponed on purpose
(these are steps that could be in “now” but the decision was taken to work on
them later)

Reviewing and Updating the Roadmap

The roadmap will get updated as time passes (next review by 31st January 2019) based
on discussions and ideas captured as issues.
This means this list should not be exhaustive, it should only represent
the “top of the stack” of ideas. It should
not function as a wish list, collection of feature requests or todo list.
For those please create a
new issue [https://github.com/jupyter/repo2docker/issues/new].

The roadmap should give the reader an idea of what is happening next, what needs
input and discussion before it can happen and what has been postponed.

The roadmap proper

Project vision

Repo2docker is a dependable tool used by humans that reduces the complexity of
creating the environment in which a piece of software can be executed.

Now

The “Now” items are being actively worked on by the project:

	reduce documentation typos and syntax errors

	increase test coverage to 80% (see https://codecov.io/gh/jupyter/repo2docker/tree/master/repo2docker for low coverage files)

	mounting repository contents in locations that is not /home/jovyan

	investigate options for pinning repo2docker versions (#490 [https://github.com/jupyter/repo2docker/issues/490])

Soon

The “Soon” items are being discussed/a plan of action is being made. Once an
item reaches the point of an actionable plan and person who wants to work on
it, the item will be moved to the “Now” section. Typically, these will be moved
at a future review of the roadmap.

	create the contributor highway, define the route from newcomer to project lead

	add Julia Manifest support (https://docs.julialang.org/en/v1/stdlib/Pkg/index.html, #486 [https://github.com/jupyter/repo2docker/issues/486])

	support different base images/build pack stacks (#487 [https://github.com/jupyter/repo2docker/issues/487])

Later

The “Later” items are things that are at the back of the project’s mind. At this
time there is no active plan for an item. The project would like to find the
resources and time to discuss and then execute these ideas.

	support execution on a remote host (with more resources than available locally) via the command-line

	add support for using ZIP files as the repo (repo2docker https://example.com/an-archive.zip)

Architecture

This is a living document talking about the architecture of repo2docker
from various perspectives.

Buildpacks

The buildpack concept comes from Heroku [https://devcenter.heroku.com/articles/buildpacks]
and Ruby on Rails’ Convention over Configuration [http://rubyonrails.org/doctrine/#convention-over-configuration]
doctrine.

Instead of the user specifying a complete specification of exactly how they want
their environment to be, they can focus only on how their environment differs from a conventional
environment. This means instead of deciding ‘should I get Python from Apt or pyenv or ?’, user
can just specify ‘I want python-3.6’. Usually, specifying a runtime and list of libraries
with explicit versions is all that is needed.

In repo2docker, a Buildpack does the following things:

	Detect if it can handle a given repository

	Build a base language environment in the docker image

	Copy the contents of the repository into the docker image

	Assemble a specific environment in the docker image based on repository contents

	Push the built docker image to a specific docker registry (optional)

	Run the build docker image as a docker container (optional)

Detect

When given a repository, repo2docker first has to determine which buildpack to use.
It takes the following steps to determine this:

	Look at the ordered list of BuildPack objects listed in Repo2Docker.buildpacks
traitlet. This is populated with a default set of buildpacks in most-specific-to-least-specific
order. Other applications using this can add / change this using traditional
traitlet [http://traitlets.readthedocs.io/en/stable/] configuration mechanisms.

	Calls the detect method of each BuildPack object. This method assumes that the repository
is present in the current working directory, and should return True if the repository is
something that it should be used for. For example, a BuildPack that uses conda to install
libraries can check for presence of an environment.yml file and say ‘yes, I can handle this
repository’ by returning True. Usually buildpacks look for presence of specific files
(requirements.txt, environment.yml, install.R, manifest.xml etc) to determine if they can handle a
repository or not. Buildpacks may also look into specific files to determine specifics of the
required environment, such as the Stencila integration which extracts the required language-specific
executions contexts from an XML file (see base BuildPack). More than one buildpack may use such
information, as properties can be inherited (e.g. the R buildpack uses the list of required Stencila
contexts to see if R must be installed).

	If no BuildPack returns true, then repo2docker will use the default BuildPack (defined in
Repo2Docker.default_buildpack traitlet).

Build base environment

Once a buildpack is chosen, it builds a base environment that is mostly the same for various
repositories built with the same buildpack.

For example, in CondaBuildPack, the base environment consists of installing miniconda [https://conda.io/miniconda.html]
and basic notebook packages (from repo2docker/buildpacks/conda/environment.yml). This is going
to be the same for most repositories built with CondaBuildPack, so we want to use
docker layer caching [https://thenewstack.io/understanding-the-docker-cache-for-faster-builds/] as
much as possible for performance reasons. Next time a repository is built with CondaBuildPack,
we can skip straight to the copy step (since the base environment docker image layers have
already been built and cached).

The get_build_scripts and get_build_script_files methods are primarily used for this.
get_build_scripts can return arbitrary bash script lines that can be run as different users,
and get_build_script_files is used to copy specific scripts (such as a conda installer) into
the image to be run as pat of get_build_scripts. Code in either has following constraints:

	You can not use the contents of repository in them, since this happens before the repository
is copied into the image. For example, pip install -r requirements.txt will not work,
since there’s no requirements.txt inside the image at this point. This is an explicit
design decision, to enable better layer caching.

	You may, however, read the contents of the repository and modify the scripts emitted based
on that! For example, in CondaBuildPack, if there’s Python 2 specified in environment.yml,
a different kind of environment is set up. The reading of the environment.yml is performed
in the BuildPack itself, and not in the scripts returned by get_build_scripts. This is fine.
BuildPack authors should still try to minimize the variants created in this fashion, to
optimize the build cache.

Copy repository contents

The contents of the repository are copied unconditionally into the Docker image, and made
available for all further commands. This is common to most BuildPacks, and the code is in
the build method of the BuildPack base class.

Assemble repository environment

The assemble stage builds the specific environment that is requested by the repository.
This usually means installing required libraries specified in a format native to the language
(requirements.txt, environment.yml, REQUIRE, install.R, etc).

Most of this work is done in get_assemble_scripts method. It can return arbitrary bash script
lines that can be run as different users, and has access to the repository contents (unlike
get_build_scripts). The docker image layers produced by this usually can not be cached,
so less restrictions apply to this than to get_build_scripts.

At the end of the assemble step, the docker image is ready to be used in various ways!

Push

Optionally, repo2docker can push a built image to a docker registry [https://docs.docker.com/registry/].
This is done as a convenience only (since you can do the same with a docker push after using repo2docker
only to build), and implemented in Repo2Docker.push method. It is only activated if using the
--push commandline flag.

Run

Optionally, repo2docker can run the built image and allow the user to access the Jupyter Notebook
running inside by default. This is also done as a convenience only (since you can do the same with docker run
after using repo2docker only to build), and implemented in Repo2Docker.run. It is activated by default
unless the --no-run commandline flag is passed.

ContentProviders

ContentProviders provide a way for repo2docker to know how to find and
retrieve a repository. They follow a similar pattern as the BuildPacks
described above. When repo2docker is called, its main argument will be
a path to a repository. This might be a local path or a URL. Upon being called,
repo2docker will loop through all ContentProviders and perform the following
commands:

	Run the detect() method on the repository path given to repo2docker. This
should return any value other than None if the path matches what the ContentProvider is looking
for.

For example, the Local ContentProvider [https://github.com/jupyter/repo2docker/blob/80b979f8580ddef184d2ba7d354e7a833cfa38a4/repo2docker/contentproviders/base.py#L64]
checks whether the argument is a valid local path. If so, then detect(
returns a dictionary: {'path': source} which defines the path to the repository.
This path is used by fetch() to check that it matches the output directory.

	If detect() returns something other than None, run fetch() with the
returned value as its argument. This should
result in the contents of the repository being placed locally to a folder.

For more information on ContentProviders, take a look at
the ContentProvider base class [https://github.com/jupyter/repo2docker/blob/80b979f8580ddef184d2ba7d354e7a833cfa38a4/repo2docker/contentproviders/base.py#L16-L60]
which has more explanation.

Design of repo2docker

The repo2docker buildpacks are inspired by
Heroku’s Build Packs [https://devcenter.heroku.com/articles/buildpacks].
The philosophy for the repo2docker buildpacks includes:

	using common configuration files for familiar installation and packaging tools

	allowing configuration files to be combined to compose more complex setups

	specifying default locations for configuration files
(in the repository’s root, binder or .binder directory)

When designing repo2docker and adding to it in the future, the
developers are influenced by two primary use cases.
The use cases for repo2docker which drive most design decisions are:

	Automated image building used by projects like
BinderHub [http://github.com/jupyterhub/binderhub]

	Manual image building and running the image from the command line client,
jupyter-repo2docker, by users interactively on their workstations

Deterministic output

The core of repo2docker can be considered a
deterministic algorithm [https://en.wikipedia.org/wiki/Deterministic_algorithm].
When given an input directory which has a particular repository checked out, it
deterministically produces a Dockerfile based on the contents of the directory.
So if we run repo2docker on the same directory multiple times, we get the
exact same Dockerfile output.

This provides a few advantages:

	Reuse of cached built artifacts based on a repository’s identity increases
efficiency and reliability. For example, if we had already run repo2docker
on a git repository at a particular commit hash, we know we can just re-use
the old output, since we know it is going to be the same. This provides
massive performance & architectural advantages when building additional
tools (like BinderHub) on top of repo2docker.

	We produce Dockerfiles that have as much in common as possible across
multiple repositories, enabling better use of the Docker build cache. This
also provides massive performance advantages.

Reproducibility and version stability

Many ingredients go into making an image from a repository:

	version of the base docker image

	version of repo2docker itself

	versions of the libraries installed by the repository

repo2docker controls the first two, the user controls the third one. The current
policy for the version of the base image is that we will use the current LTS
version Bionic Beaver (18.04) for the foreseeable future.

The version of repo2docker used to build an image can influence which packages
are installed by default and which features are supported during the build
process. We will periodically update those packages to keep step with releases
of Jupyter Notebook, JupyterLab, etc. For packages that are installed by
default but where you want to control the version we recommend you specify them
explicitly in your dependencies.

Unix principles “do one thing well”

repo2docker should do one thing, and do it well. This one thing is:

Given a repository, deterministically build a docker image from
it.

There’s also some convenience code (to run the built image) for users, but
that’s separated out cleanly. This allows easy use by other projects (like
BinderHub).

There is additional (and very useful) design advice on this in
the Art of Unix Programming [https://web.archive.org/web/20190921131144/http://www.faqs.org/docs/artu/ch01s06.html] which
is a highly recommended quick read.

Composability

Although other projects, like
s2i [https://github.com/openshift/source-to-image], exist to convert source to
Docker images, repo2docker provides the additional functionality to support
composable environments. We want to easily have an image with
Python3+Julia+R-3.2 environments, rather than just one single language
environment. While generally one language environment per container works well,
in many scientific / datascience computing environments you need multiple
languages working together to get anything done. So all buildpacks are
composable, and need to be able to work well with other languages.

Pareto principle [https://en.wikipedia.org/wiki/Pareto_principle] (The 80-20 Rule)

Roughly speaking, we want to support 80% of use cases, and provide an escape
hatch (raw Dockerfiles) for the other 20%. We explicitly want to provide support
only for the most common use cases - covering every possible use case never ends
well.

An easy process for getting support for more languages here is to demonstrate
their value with Dockerfiles that other people can use, and then show that this
pattern is popular enough to be included inside repo2docker. Remember that ‘yes’
is forever (very hard to remove features!), but ‘no’ is only temporary!

Common tasks

These are some common tasks to be done as a part of developing
and maintaining repo2docker. If you’d like more guidance for how
to do these things, reach out in the JupyterHub Gitter channel [https://gitter.im/jupyterhub/jupyterhub].

Running tests

We have a lot of tests for various cases supported by repo2docker in the tests/
subdirectory. If you fix a bug or add new functionality consider adding a new
test to prevent the bug from coming back. These use
py.test [https://docs.pytest.org/].

You can run all the tests with:

py.test -s tests/*

If you want to run a specific test, you can do so with:

py.test -s tests/<path-to-test>

Update and Freeze BuildPack Dependencies

This section covers the process by which repo2docker defines and updates the
dependencies that are installed by default for several buildpacks.

For both the conda and virtualenv (pip) base environments in the Conda BuildPack and Python BuildPack,
we install specific pinned versions of all dependencies. We explicitly list the dependencies
we want, then freeze them at commit time to explicitly list all the
transitive dependencies at current versions. This way, we know that
all dependencies will have the exact same version installed at all times.

To update one of the dependencies shared across all repo2docker builds, you
must follow these steps (with more detailed information in the sections below):

	Make sure you have Docker [https://www.docker.com/] running on your computer

	Bump the version numbers of the dependencies you want to update in the conda environment (link [https://github.com/jupyter/repo2docker/blob/master/CONTRIBUTING.md#conda-dependencies])

	Make a pull request with your changes (link [https://github.com/jupyter/repo2docker/blob/master/CONTRIBUTING.md#make-a-pull-request])

See the subsections below for more detailed instructions.

Conda dependencies

	There are two files related to conda dependencies. Edit as needed.

	repo2docker/buildpacks/conda/environment.yml

Contains list of packages to install in Python3 conda environments,
which are the default. This is where all Notebook versions &
notebook extensions (such as JupyterLab / nteract) go.

	repo2docker/buildpacks/conda/environment.py-2.7.yml

Contains list of packages to install in Python2 conda environments, which
can be specifically requested by users. This only needs IPyKernel
and kernel related libraries. Notebook / Notebook Extension need
not be installed here.

	Once you edit either of these files to add a new package / bump version on
an existing package, you should then run:

cd ./repo2docker/buildpacks/conda/
python freeze.py

This script will resolve dependencies and write them to the respective .frozen.yml
files. You will need docker installed to run this script.

	After the freeze script finishes, a number of files will have been created.
Commit the following subset of files to git:

repo2docker/buildpacks/conda/environment.yml
repo2docker/buildpacks/conda/environment.frozen.yml
repo2docker/buildpacks/conda/environment.py-2.7.yml
repo2docker/buildpacks/conda/environment.py-2.7.frozen.yml
repo2docker/buildpacks/conda/environment.py-3.5.frozen.yml
repo2docker/buildpacks/conda/environment.py-3.6.frozen.yml

	Make a pull request; see details below.

	Once the pull request is approved (but not yet merged), Update the
change log (details below) and commit the change log, then update
the pull request.

Make a Pull Request

Once you’ve made the commit, please make a Pull Request to the jupyterhub/repo2docker
repository, with a description of what versions were bumped / what new packages were
added and why. If you fix a bug or add new functionality consider adding a new
test to prevent the bug from coming back/the feature breaking in the future.

Creating a Release

We try to make a release of repo2docker every few months if possible.

We follow semantic versioning [https://semver.org/].

A new release will automatically be created when a new git tag is created
and pushed to the repository (using
Travis CI [https://github.com/jupyter/repo2docker/blob/master/.travis.yml#L52]).

To create a new release, follow these steps:

Confirm that the changelog is ready

The changelog [https://github.com/jupyter/repo2docker/blob/master/docs/source/changelog.rst]
should reflect all significant enhancements and fixes to repo2docker and
its documentation. In addition, ensure that the correct version is displayed
at the top, and create a new dev section if needed.

Create a new tag and push it

First, tag a new release locally:

V=0.7.0; git tag -am "release $V" $V

Then push this change up to the master repository

git push origin --tags

Travis should automatically run the tests and, if they pass, create a
new release on the repo2docker PyPI [https://pypi.org/project/jupyter-repo2docker/].
Once this has completed, make sure that the new version has been updated.

Create a new release on the GitHub repository

Once the new release has been pushed to PyPI, we need to create a new
release on the GitHub repository releases page [https://github.com/jupyter/repo2docker/releases]. Once on that page, follow these steps:

	Click “Draft a new release”

	Choose a tag version using the same tag you just created above

	The release name is simply the tag version

	The description is a link to the Changelog [https://github.com/jupyter/repo2docker/blob/master/docs/source/changelog.rst],
ideally with an anchor to the latest release.

	Finally, click “Publish release”

That’s it!

Update the change log

To add your change to the change log, find the relevant Feature/Bug
fix/API change section for the next release near the top of the file;
then add one or two sentences as a new bullet point about your
changes. Include the pull request or issue number between square
brackets at the end.

Some details:

	versioning follows the x.y.z, major.minor.bugfix numbering

	bug fixes go into the next bugfix release. If there isn’t any, you
can create a new section (see point below). Don’t worry if you’re
not sure about that, and think it should go into a next major or
minor release: an admin will let you know, or move the change later
to the appropriate section

	API changes should preferably go into the next major release, unless
they are backward compatible (for example, a deprecated function
keyword): then they can go into the next minor release. For release
with major release 0, non-backward compatible breaking changes are
also fine for the next minor release.

	new features should go into the next minor release.

	if there is no section for the appropriate release, you can add one:

follow the versioning scheme, by simply increasing the relevant
number for one of the major /minor/bugfix numbers, appropriate for
your change (see the above bullet points); add the release
section. Then add three subsections: new features, api changes, and
bug fixes. Leave out the sections that are not appropriate for the
newlye added release section.

Release candidate versions in the change log are only temporary, and
should be superseded by either a next release candidate, or the final
release for that version (bugfix version 0).

Keeping the Pipfile and requirements files up to date

We now have both a dev-requirements.txt and a Pifile for repo2docker, as
such it is important to keep these in sync/up-to-date.

Both files use pip identifiers so if you are updating for example the Sphinx version
in the doc-requirements.txt (currently Sphinx = ">=1.4,!=1.5.4") you can use the
same syntax to update the Pipfile and viceversa.

At the moment this has to be done manually so please make sure to update both
files accordingly.

Uncommon tasks

Compare generated Dockerfiles between repo2docker versions

For larger refactorings it can be useful to check that the generated Dockerfiles match
between an older version of r2d and the current version. The following shell script
automates this test.

#! /bin/bash -e

current_version=$(jupyter-repo2docker --version | sed s@+@-@)
echo "Comparing $(pwd) (local $current_version vs. $R2D_COMPARE_TO)"
basename="dockerfilediff"

diff_r2d_dockerfiles_with_version () {
 docker run --rm -t -v "$(pwd)":"$(pwd)" --user 1000 jupyter/repo2docker:"$1" jupyter-repo2docker --no-build --debug "$(pwd)" &> "$basename"."$1"
 jupyter-repo2docker --no-build --debug "$(pwd)" &> "$basename"."$current_version"

 # remove first line logging the path
 sed -i '/^\[Repo2Docker\]/d' "$basename"."$1"
 sed -i '/^\[Repo2Docker\]/d' "$basename"."$current_version"

 diff --strip-trailing-cr "$basename"."$1" "$basename"."$current_version" | colordiff
 rm "$basename"."$current_version" "$basename"."$1"
}

startdir="$(pwd)"
cd "$1"

#diff_r2d_dockerfiles 0.10.0-22.g4f428c3.dirty
diff_r2d_dockerfiles_with_version "$R2D_COMPARE_TO"

cd "$startdir"

Put the code above in a file tests/dockerfile_diff.sh and make it executable: chmod +x dockerfile_diff.sh.

Configure the repo2docker version you want to compare with your local version in the environment variable R2D_COMPARE_TO.
The scripts takes one input: the directory where repo2docker should be executed.

cd tests/
R2D_COMPARE_TO=0.10.0 ./dockerfile_diff.sh venv/py35/

Run it for all directories where there is a verify file:

cd tests/
R2D_COMPARE_TO=0.10.0 CMD=$(pwd)/dockerfile_diff.sh find . -name 'verify' -execdir bash -c '$CMD $(pwd)' \;

To keep the created Dockefilers for further inspection, comment out the deletion line in the script.

Add a new buildpack

A new buildpack is needed when a new language or a new package manager should be
supported. Existing buildpacks [https://github.com/jupyter/repo2docker/tree/master/repo2docker/buildpacks]
are a good model for how new buildpacks should be structured.
See the Buildpacks page for more information about the
structure of a buildpack.

Criteria to balance and consider

Criteria to balance are:

	Maintenance burden on repo2docker.

	How easy it is to use a given setup without support from repo2docker natively.
There are two escape hatches here - postBuild and Dockerfile.

	How widely used is this language / package manager? This is the primary tradeoff
with point (1). We (the Binder / Jupyter team) want to make new formats
as little as possible, so ideally we can just say “X repositories on binder already use
this using one of the escape hatches in (2), so let us make it easy and add
native support”.

Adding libraries or UI to existing buildpacks

Note that this doesn’t apply to adding additional libraries / UI to existing
buildpacks. For example, if we had an R buildpack and it supported IRKernel,
it is much easier to
just support RStudio / Shiny with it, since those are library additions instead of entirely
new buildpacks.

Add a new content provider

Adding a new content provider allows repo2docker to grab repositories from new
locations on the internet. To do so, you should take the following steps:

	Sub-class the ContentProvider class [https://github.com/jupyter/repo2docker/blob/master/repo2docker/contentproviders/base.py#L17].
This will give you a skeleton class you can modify to support your new
content provider.

	Implement a detect() method for the class. This takes an input
string (e.g., a URL or path) and determines if it points to this particular
content provider. It should return a dictionary (called
spec that will be passed to the fetch() method. For example, see the ZenodoProvider detect method [https://github.com/jupyter/repo2docker/pull/693/files#diff-a96fcf624176b06e21c3ef7f6f6a425bR31].

	Implement a fetch() method for the class. This takes the dictionary spec as input, and
ensures the repository exists on disk (e.g., by downloading it) and
returns a path to it.
For example, see the ZenodoProvider fetch method [https://github.com/jupyter/repo2docker/pull/693/files#diff-a96fcf624176b06e21c3ef7f6f6a425bR57].

Changelog

Version 0.11.0

Release date: 2020-02-05

New features

	Add support for Figshare in PR #788 [https://github.com/jupyter/repo2docker/pull/788] by @nuest [https://github.com/nuest].

	Add support for Dataverse in PR #739 [https://github.com/jupyter/repo2docker/pull/739] by @Xarthisius [https://github.com/Xarthisius].

	Add support for configuring the version of R installed in PR #772 [https://github.com/jupyter/repo2docker/pull/772] by
@betatim [https://github.com/betatim].

	Add support for Julia 1.2.0 in PR #768 [https://github.com/jupyter/repo2docker/pull/768] by @davidanthoff [https://github.com/davidanthoff].

	Add support for Julia 1.3.0 and 1.0.5 in PR #822 [https://github.com/jupyter/repo2docker/pull/822] by @davidanthoff [https://github.com/davidanthoff].

	Add support for Julia 1.3.1 in PR #831 [https://github.com/jupyter/repo2docker/pull/831] by @davidanthoff [https://github.com/davidanthoff].

	Update Miniconda to 4.7.10 in PR #769 [https://github.com/jupyter/repo2docker/pull/769] by @davidrpugh [https://github.com/davidrpugh].

	Update IRKernel to 1.0.2 in PR #770 [https://github.com/jupyter/repo2docker/pull/770] by @GeorgianaElena [https://github.com/GeorgianaElena].

	Update RStudio to 1.2 in PR #803 [https://github.com/jupyter/repo2docker/pull/803] by @pablobernabeu [https://github.com/pablobernabeu].

	Switch to “pandas” sphinx theme for documentation in PR #816 [https://github.com/jupyter/repo2docker/pull/816] by @choldgraf [https://github.com/choldgraf].

	Add content provider documentation in PR #824 [https://github.com/jupyter/repo2docker/pull/824] by @choldgraf [https://github.com/choldgraf].

	Remove legacy buildpack in PR #829 [https://github.com/jupyter/repo2docker/pull/829] by @betatim [https://github.com/betatim].

	Add support for automatic RStudio install when using R packages via conda
in PR #838 [https://github.com/jupyter/repo2docker/pull/838] by @xhochy [https://github.com/xhochy].

	Add support for Python 3.8 in PR #840 [https://github.com/jupyter/repo2docker/pull/840] by @minrk [https://github.com/minrk].

	Add Hydroshare as content provider in PR #800 [https://github.com/jupyter/repo2docker/pull/800] by @sblack-usu [https://github.com/sblack-usu].

	Update to Jupyter Notebook 6 and Lab 1.2 in PR #839 [https://github.com/jupyter/repo2docker/pull/839] by @minrk [https://github.com/minrk].

Bug fixes

	Fix for submodule check out in PR #809 [https://github.com/jupyter/repo2docker/pull/809] by @davidbrochart [https://github.com/davidbrochart].

	Handle requirements.txt files with different encodings in PR #771 [https://github.com/jupyter/repo2docker/pull/771]
by @GeorgianaElena [https://github.com/GeorgianaElena].

	Update to nteract-on-jupyter 2.1.3 in PR #2.1.3 by :user:`betatim [https://github.com/jupyter/repo2docker/pull/2.1.3 by :user:`betatim].

	Use useradd –no-log-init to fix exhausting disk space in PR #804 [https://github.com/jupyter/repo2docker/pull/804] by
@manics. [https://github.com/manics.]

	Add help text for commandline arguments in PR #517 [https://github.com/jupyter/repo2docker/pull/517] by @yuvipanda [https://github.com/yuvipanda].

	Fix submodule checkout in PR #809 [https://github.com/jupyter/repo2docker/pull/809] by @davidbrochart [https://github.com/davidbrochart].

Version 0.10.0

Release date: 2019-08-07

New features

	Increased minimum Python version supported for running repo2docker itself
to Python 3.5 in PR #684 [https://github.com/jupyter/repo2docker/pull/684] by @betatim [https://github.com/betatim].

	Support for Pipfile and Pipfile.lock implemented in PR #649 [https://github.com/jupyter/repo2docker/pull/649] by
@consideratio [https://github.com/consideratio].

	Use only conda packages for our base environments in PR #728 [https://github.com/jupyter/repo2docker/pull/728] by
@scottyhq [https://github.com/scottyhq].

	Fast rebuilds when repo dependencies haven’t changed by @minrk [https://github.com/minrk] and
@betatim [https://github.com/betatim] in PR #743 [https://github.com/jupyter/repo2docker/pull/743], PR #752 [https://github.com/jupyter/repo2docker/pull/752], PR #718 [https://github.com/jupyter/repo2docker/pull/718] and PR #716 [https://github.com/jupyter/repo2docker/pull/716].

	Add support for Zenodo in PR #693 [https://github.com/jupyter/repo2docker/pull/693] by @betatim [https://github.com/betatim].

	Add support for general Invenio repositories in PR #704 [https://github.com/jupyter/repo2docker/pull/704] by @tmorrell [https://github.com/tmorrell].

	Add support for julia 1.0.4 and 1.1.1 in PR #710 [https://github.com/jupyter/repo2docker/pull/710] by @davidanthoff [https://github.com/davidanthoff].

	Bump Conda from 4.6.14 to 4.7.5 in PR #719 [https://github.com/jupyter/repo2docker/pull/719] by @davidrpugh [https://github.com/davidrpugh].

API changes

Bug fixes

	Prevent building the image as root if –user-id and –user-name are not specified
in PR #676 [https://github.com/jupyter/repo2docker/pull/676] by @Xarthisius [https://github.com/Xarthisius].

	Add bash to Dockerfile to fix usage of private repos with git-crendential-env in
PR #738 [https://github.com/jupyter/repo2docker/pull/738] by @eexwhyzee [https://github.com/eexwhyzee].

	Fix memory limit enforcement in PR #677 [https://github.com/jupyter/repo2docker/pull/677] by @betatim [https://github.com/betatim].

Version 0.9.0

Release date: 2019-05-05

New features

	Support for julia Project.toml, JuliaProject.toml and Manifest.toml files in PR #595 [https://github.com/jupyter/repo2docker/pull/595] by
@davidanthoff [https://github.com/davidanthoff]

	Set JULIA_PROJECT globally, so that every julia instance starts with the
julia environment activated in PR #612 [https://github.com/jupyter/repo2docker/pull/612] by @davidanthoff [https://github.com/davidanthoff].

	Update Miniconda version to 4.6.14 and Conda version to 4.6.14 in PR #637 [https://github.com/jupyter/repo2docker/pull/637] by
@jhamman [https://github.com/jhamman]

	Install notebook into notebook env instead of root.
Activate conda environments and shell integration via ENTRYPOINT
in PR #651 [https://github.com/jupyter/repo2docker/pull/651] by @minrk [https://github.com/minrk]

	Support for .binder directory in addition to binder directory for location of
configuration files, in PR #653 [https://github.com/jupyter/repo2docker/pull/653] by @jhamman [https://github.com/jhamman].

	Updated contributor guide and issue templates for bugs, feature requests,
and support questions in PR #654 [https://github.com/jupyter/repo2docker/pull/654] and PR #655 [https://github.com/jupyter/repo2docker/pull/655] by @KirstieJane [https://github.com/KirstieJane] and
@betatim [https://github.com/betatim].

	Create a page naming and describing the “Reproducible Execution
Environment Specification” (the specification used by repo2docker)
in PR #662 [https://github.com/jupyter/repo2docker/pull/662] by @choldgraf [https://github.com/choldgraf].

API changes

Bug fixes

	Install IJulia kernel into ${NB_PYTHON_PREFIX}/share/jupyter in PR #622 [https://github.com/jupyter/repo2docker/pull/622] by
@davidanthoff [https://github.com/davidanthoff].

	Ensure git submodules are updated and initilized correctly in PR #639 [https://github.com/jupyter/repo2docker/pull/639] by
@djhoese [https://github.com/djhoese].

	Use archive.debian.org as source for the debian jessie based legacy
buildpack in PR #633 [https://github.com/jupyter/repo2docker/pull/633] by @betatim [https://github.com/betatim].

	Update to version 5.7.6 of the notebook package used in all environments
in PR #628 [https://github.com/jupyter/repo2docker/pull/628] by @betatim [https://github.com/betatim].

	Update to version 5.7.8 of the notebook package and version 2.0.12 of
nteract-on-jupyter in PR #650 [https://github.com/jupyter/repo2docker/pull/650] by @betatim [https://github.com/betatim].

	Switch to newer version of jupyter-server-proxy to fix websocket handling
in PR #646 [https://github.com/jupyter/repo2docker/pull/646] by @betatim [https://github.com/betatim].

	Update to pip version 19.0.3 in PR #647 [https://github.com/jupyter/repo2docker/pull/647] by @betatim [https://github.com/betatim].

	Ensure ENTRYPOINT is an absolute path in PR #657 [https://github.com/jupyter/repo2docker/pull/657] by @yuvipanda [https://github.com/yuvipanda].

	Fix handling of –build-memory-limit values without a postfix in PR #652 [https://github.com/jupyter/repo2docker/pull/652]
by @betatim [https://github.com/betatim].

Version 0.8.0

Release date: 2019-02-21

New features

	Add additional metadata to docker images about how they were built PR #500 [https://github.com/jupyter/repo2docker/pull/500] by
@jrbourbeau [https://github.com/jrbourbeau].

	Allow users to install global NPM packages: PR #573 [https://github.com/jupyter/repo2docker/pull/573] by @GladysNalvarte [https://github.com/GladysNalvarte].

	Add documentation on switching the user interface presented by a
container. PR #568 [https://github.com/jupyter/repo2docker/pull/568] by user:choldgraf.

	Increased test coverage to ~87% by @betatim [https://github.com/betatim] and @yuvipanda [https://github.com/yuvipanda].

	Documentation improvements and additions by @lheagy [https://github.com/lheagy], @choldgraf [https://github.com/choldgraf].

	Remove f-strings from code base, repo2docker is compatible with Python 3.4+
again by @jrbourbeau [https://github.com/jrbourbeau] in PR #520 [https://github.com/jupyter/repo2docker/pull/520].

	Local caching of previously built repostories to speed up launch times
by @betatim [https://github.com/betatim] in PR #511 [https://github.com/jupyter/repo2docker/pull/511].

	Make destination of repository content in the container image configurable
on the CLI via --target-repo-dir. By @yuvipanda [https://github.com/yuvipanda] in PR #507 [https://github.com/jupyter/repo2docker/pull/507].

	Expose CPU limit settings for building and running containers. By
@GladysNalvarte [https://github.com/GladysNalvarte] in PR #579 [https://github.com/jupyter/repo2docker/pull/579].

	Make Python 3.7 the default version. By @yuvipanda [https://github.com/yuvipanda] and @minrk [https://github.com/minrk] in
PR #539 [https://github.com/jupyter/repo2docker/pull/539].

API changes

Bug fixes

	In some cases the version of conda installed in images was not pinned and got
upgraded by user actions. Fixed in PR #576 [https://github.com/jupyter/repo2docker/pull/576] by @minrk [https://github.com/minrk].

	Fix an error related to checking if debug output was enabled or not:
PR #575 [https://github.com/jupyter/repo2docker/pull/575] by @yuvipanda [https://github.com/yuvipanda].

	Update nteract frontend to version 2.0.0 by @yuvipanda [https://github.com/yuvipanda] in PR #571 [https://github.com/jupyter/repo2docker/pull/571].

	Fix quoting issue in GIT_CREDENTIAL_ENV environment variable by
@minrk [https://github.com/minrk] in PR #572 [https://github.com/jupyter/repo2docker/pull/572].

	Change to using the first 8 characters of each Git commit, not the last 8,
to tag each built docker image of repo2docker itself. @minrk [https://github.com/minrk] in PR #562 [https://github.com/jupyter/repo2docker/pull/562].

	Allow users to select the Julia when using a requirements.txt by
@yuvipanda [https://github.com/yuvipanda] in PR #557 [https://github.com/jupyter/repo2docker/pull/557].

	Set JULIA_DEPOT_PATH to install packages outside the home directory by
@yuvipanda [https://github.com/yuvipanda] in PR #555 [https://github.com/jupyter/repo2docker/pull/555].

	Update to Jupyter notebook 5.7.4 PR #519 [https://github.com/jupyter/repo2docker/pull/519] by @minrk [https://github.com/minrk].

Version 0.7.0

Release date: 2018-12-12

New features

	Build from sub-directory: build the image based on a sub-directory of a
repository PR #413 [https://github.com/jupyter/repo2docker/pull/413] by @dsludwig [https://github.com/dsludwig].

	Editable mode: allows editing a local repository from a live container
PR #421 [https://github.com/jupyter/repo2docker/pull/421] by @evertrol [https://github.com/evertrol].

	Change log added PR #426 [https://github.com/jupyter/repo2docker/pull/426] by @evertrol [https://github.com/evertrol].

	Documentation: improved the documentation for contributors PR #453 [https://github.com/jupyter/repo2docker/pull/453] by
@choldgraf [https://github.com/choldgraf].

	Buildpack: added support for the nix package manager PR #407 [https://github.com/jupyter/repo2docker/pull/407] by
@costrouc [https://github.com/costrouc].

	Log a ‘success’ message when push is complete PR #482 [https://github.com/jupyter/repo2docker/pull/482] by
@yuvipanda [https://github.com/yuvipanda].

	Allow specifying images to reuse cache from PR #478 [https://github.com/jupyter/repo2docker/pull/478] by
@yuvipanda [https://github.com/yuvipanda].

	Add JupyterHub back to base environment PR #476 [https://github.com/jupyter/repo2docker/pull/476] by @yuvipanda [https://github.com/yuvipanda].

	Repo2docker has a logo! by @agahkarakuzu [https://github.com/agahkarakuzu] and @blairhudson [https://github.com/blairhudson].

	Improve support for Stencila, including identifying stencila runtime from
document context PR #457 [https://github.com/jupyter/repo2docker/pull/457] by @nuest [https://github.com/nuest].

API changes

	Add content provider abstraction PR #421 [https://github.com/jupyter/repo2docker/pull/421] by @betatim [https://github.com/betatim].

Bug fixes

	Update to Jupyter notebook 5.7 PR #475 [https://github.com/jupyter/repo2docker/pull/475] by @betatim [https://github.com/betatim] and @minrk [https://github.com/minrk].

Version 0.6

Released 2018-09-09

Version 0.5

Released 2018-02-07

Version 0.4.1

Released 2018-09-06

Version 0.2

Released 2018-05-25

Version 0.1.1

Released 2017-04-19

Version 0.1

Released 2017-04-14

Index

 Symbols
 | C
 | J
 | R

Symbols

 	
 	
 --appendix <appendix>

 	jupyter-repo2docker command line option

 	
 --build-memory-limit <build_memory_limit>

 	jupyter-repo2docker command line option

 	
 --cache-from <cache_from>

 	jupyter-repo2docker command line option

 	
 --config <config>

 	jupyter-repo2docker command line option

 	
 --debug

 	jupyter-repo2docker command line option

 	
 --editable, -E

 	jupyter-repo2docker command line option

 	
 --env <environment>, -e <environment>

 	jupyter-repo2docker command line option

 	
 --image-name <image_name>

 	jupyter-repo2docker command line option

 	
 --json-logs

 	jupyter-repo2docker command line option

 	
 --no-build

 	jupyter-repo2docker command line option

 	
 --no-clean

 	jupyter-repo2docker command line option

 	
 --no-run

 	jupyter-repo2docker command line option

 	
 	
 --publish <ports>, -p <ports>

 	jupyter-repo2docker command line option

 	
 --publish-all, -P

 	jupyter-repo2docker command line option

 	
 --push

 	jupyter-repo2docker command line option

 	
 --ref <ref>

 	jupyter-repo2docker command line option

 	
 --subdir <subdir>

 	jupyter-repo2docker command line option

 	
 --target-repo-dir <target_repo_dir>

 	jupyter-repo2docker command line option

 	
 --user-id <user_id>

 	jupyter-repo2docker command line option

 	
 --user-name <user_name>

 	jupyter-repo2docker command line option

 	
 --version

 	jupyter-repo2docker command line option

 	
 --volume <volumes>, -v <volumes>

 	jupyter-repo2docker command line option

 	
 -h, --help

 	jupyter-repo2docker command line option

C

 	
 	
 cmd

 	jupyter-repo2docker command line option

J

 	
 	
 jupyter-repo2docker command line option

 	--appendix <appendix>

 	--build-memory-limit <build_memory_limit>

 	--cache-from <cache_from>

 	--config <config>

 	--debug

 	--editable, -E

 	--env <environment>, -e <environment>

 	--image-name <image_name>

 	--json-logs

 	--no-build

 	--no-clean

 	--no-run

 	--publish <ports>, -p <ports>

 	--publish-all, -P

 	--push

 	--ref <ref>

 	--subdir <subdir>

 	--target-repo-dir <target_repo_dir>

 	--user-id <user_id>

 	--user-name <user_name>

 	--version

 	--volume <volumes>, -v <volumes>

 	-h, --help

 	cmd

 	repo

R

 	
 	
 repo

 	jupyter-repo2docker command line option

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment.png

_static/file.png

_static/logo.png

nav.xhtml

 Table of Contents

 		
 jupyter-repo2docker

 		
 Getting Started

 		
 Installing repo2docker

 		
 Prerequisite: Docker

 		
 Installing with pip

 		
 Installing from source code

 		
 Windows support

 		
 Using repo2docker

 		
 Calling repo2docker

 		
 Building a specific branch, commit or tag

 		
 Where to put configuration files

 		
 Debugging repo2docker with –debug and –no-build

 		
 Command line API

 		
 Frequently Asked Questions (FAQ)

 		
 How should I specify another version of Python?

 		
 What versions of Python (or R or Julia…) are supported?

 		
 Why is my repository is failing to build with ResolvePackageNotFound ?

 		
 Can I add executable files to the user’s PATH?

 		
 How do I set environment variables?

 		
 Can I use repo2docker to bootstrap my own Dockerfile?

 		
 Can I use repo2docker to edit a local host repository within a Docker environment?

 		
 Why is my R shiny app not launching?

 		
 Why does repo2docker need to exist? Why not use tool like source2image?

 		
 How-to Guides

 		
 Configure the user interface

 		
 JupyterLab

 		
 nteract

 		
 RStudio

 		
 Shiny

 		
 Stencila

 		
 Choose languages for your environment

 		
 Python

 		
 The R Language

 		
 Julia

 		
 Languages not covered here

 		
 Using multiple languages at once

 		
 How to automatically create a environment.yml that works with repo2docker

 		
 The challenge

 		
 The solution

 		
 Share JupyterLab Workspaces with a repository

 		
 Build JupyterHub-ready images

 		
 Using repo2docker as part of your Continuous Integration

 		
 Getting Started

 		
 Configuring your repository

 		
 Configuration Files

 		
 environment.yml - Install a Python environment

 		
 Pipfile and/or Pipfile.lock - Install a Python environment

 		
 requirements.txt - Install a Python environment

 		
 setup.py - Install Python packages

 		
 Project.toml - Install a Julia environment

 		
 REQUIRE - Install a Julia environment (legacy)

 		
 install.R - Install an R/RStudio environment

 		
 apt.txt - Install packages with apt-get

 		
 DESCRIPTION - Install an R package

 		
 manifest.xml - Install Stencila

 		
 postBuild - Run code after installing the environment

 		
 start - Run code before the user sessions starts

 		
 runtime.txt - Specifying runtimes

 		
 default.nix - the nix package manager

 		
 Dockerfile - Advanced environments

 		
 The Reproducible Execution Environment Specification

 		
 Contributing

 		
 Contributing to repo2docker

 		
 Types of contribution

 		
 Process for making a contribution

 		
 Guidelines to getting a Pull Request merged

 		
 Setting up for Local Development

 		
 Building the documentation locally

 		
 Roadmap

 		
 Using the roadmap

 		
 The roadmap proper

 		
 Architecture

 		
 Buildpacks

 		
 ContentProviders

 		
 Design of repo2docker

 		
 Deterministic output

 		
 Reproducibility and version stability

 		
 Unix principles “do one thing well”

 		
 Composability

 		
 Pareto principle (The 80-20 Rule)

 		
 Common tasks

 		
 Running tests

 		
 Update and Freeze BuildPack Dependencies

 		
 Creating a Release

 		
 Update the change log

 		
 Keeping the Pipfile and requirements files up to date

 		
 Uncommon tasks

 		
 Compare generated Dockerfiles between repo2docker versions

 		
 Add a new buildpack

 		
 Criteria to balance and consider

 		
 Add a new content provider

 		
 Changelog

 		
 Version 0.11.0

 		
 New features

 		
 Bug fixes

 		
 Version 0.10.0

 		
 New features

 		
 API changes

 		
 Bug fixes

 		
 Version 0.9.0

 		
 New features

 		
 API changes

 		
 Bug fixes

 		
 Version 0.8.0

 		
 New features

 		
 API changes

 		
 Bug fixes

 		
 Version 0.7.0

 		
 New features

 		
 API changes

 		
 Bug fixes

 		
 Version 0.6

 		
 Version 0.5

 		
 Version 0.4.1

 		
 Version 0.2

 		
 Version 0.1.1

 		
 Version 0.1

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/images/repo2docker.png
(T
)

_static/up.png

_static/images/logo.png

