
repo2docker Documentation
Release 0.1

Project Jupyter

Feb 21, 2019





Contents

1 Site Contents 3

i



ii



repo2docker Documentation, Release 0.1

jupyter-repo2docker is a tool to build, run, and push Docker images from source code repositories. repo2docker
fetches a repository (e.g., from GitHub or other locations) and builds a container image based on the configuration
files found in the repository. It can be used to explore a repository locally by building and executing the constructed
image of the repository.

Please report Bugs, ask questions or contribute to the project.

Contents 1

https://github.com/jupyter/repo2docker/issues
https://gitter.im/jupyterhub/binder
https://github.com/jupyter/repo2docker/blob/master/CONTRIBUTING.md


repo2docker Documentation, Release 0.1

2 Contents



CHAPTER 1

Site Contents

1.1 Installing repo2docker

repo2docker requires Python 3.4 and above on Linux and macOS. See below for more information about Windows
support.

1.1.1 Prerequisite: docker

Install Docker as it is required to build Docker images. The Community Edition, is available for free.

Recent versions of Docker are recommended. The latest version of Docker, 18.03, successfully builds repositories
from binder-examples. The BinderHub helm chart uses version 17.11.0-ce-dind. See the helm chart for more
details.

1.1.2 Installing with pip

We recommend installing repo2docker with the pip tool:

python3 -m pip install jupyter-repo2docker

For information on using repo2docker, see Using repo2docker.

1.1.3 Installing from source code

Alternatively, you can install repo2docker from source, i.e. if you are contributing back to this project:

git clone https://github.com/jupyter/repo2docker.git
cd repo2docker
pip install -e .

That’s it! For information on using repo2docker, see Using repo2docker.

3

https://www.docker.com
https://www.docker.com/community-edition
https://github.com/binder-examples
https://binderhub.readthedocs.io/
https://github.com/jupyterhub/binderhub/blob/master/helm-chart/binderhub/values.yaml#L167


repo2docker Documentation, Release 0.1

1.1.4 Windows support

Windows support for repo2docker is still in the experimental stage.

An article about using Windows and the WSL (Windows Subsytem for Linux or Bash on Windows) provides additional
information about Windows and docker.

1.1.5 JupyterHub-ready images

JupyterHub allows multiple users to collaborate on a shared Jupyter server. repo2docker can build Docker images
that can be shared within a JupyterHub deployment. For example, mybinder.org uses JupyterHub and repo2docker
to allow anyone to build a Docker image of a git repository online and share an executable version of the repository
with a URL to the built image.

To build JupyterHub-ready Docker images with repo2docker, the version of your JupterHub deployment must be
included in the environment.yml or requirements.txt of the git repositories you build.

If your instance of JupyterHub uses DockerSpawner, you will need to set its command to run
jupyterhub-singleuser by adding this line in your configuration file:

c.DockerSpawner.cmd = ['jupyterhub-singleuser']

1.2 Using repo2docker

Docker must be running in order to run repo2docker. For more information on installing repo2docker, see
Installing repo2docker.

repo2docker performs two steps:

1. builds a Docker image from a git repo

2. runs a Jupyter server within the image to explore the repository

repo2docker is called with this command:

jupyter-repo2docker <URL-or-path to repository>

where <URL-or-path to repository> is a URL or path to the source repository.

For example, use the following to build an image of Peter Norvig’s Pytudes:

jupyter-repo2docker https://github.com/norvig/pytudes

To build a particular branch and commit, use the argument --ref to specify the branch-name or commit-hash:

jupyter-repo2docker https://github.com/norvig/pytudes --ref
→˓9ced85dd9a84859d0767369e58f33912a214a3cf

Tip: For reproducible research, we recommend specifying a commit-hash to deterministically build a fixed version
of a repository. Not specifying a commit-hash will result in the latest commit of the repository being built.

Building the image may take a few minutes.

During building, repo2docker clones the repository to obtain its contents and inspects the repository for configu-
ration files.

4 Chapter 1. Site Contents

https://nickjanetakis.com/blog/setting-up-docker-for-windows-and-wsl-to-work-flawlessly
https://github.com/jupyterhub/jupyterhub
https://mybinder.org
https://github.com/jupyterhub/jupyterhub
https://docs.docker.com/
https://github.com/norvig/pytudes


repo2docker Documentation, Release 0.1

By default, repo2docker will assume you are using Python 3.6 unless you include the version of Python in your
configuration files. repo2docker support is best with Python 2.7, 3.5, and 3.6. In the case of this repository, a
Python version is not specified in their configuration files and Python 3.6 is installed.

Pytudes uses a requirements.txt file to specify its Python environment. repo2docker uses pip to install dependen-
cies listed in the requirement.txt in the image. To learn more about configuration files in repo2docker visit
Configuration Files.

When the image is built, a message will be output to your terminal:

Copy/paste this URL into your browser when you connect for the first time,
to login with a token:

http://0.0.0.0:36511/?token=f94f8fabb92e22f5bfab116c382b4707fc2cade56ad1ace0

Pasting the URL into your browser will open Jupyter Notebook with the dependencies and contents of the source
repository in the built image.

Because JupyterLab is a server extension of the classic Jupyter Notebook server, you can launch JupyterLab by opening
Jupyter Notebook and visiting the `/lab to the end of the URL:

http(s)://<server:port>/<lab-location>/lab

To switch back to the classic notebook, add /tree to the URL:

http(s)://<server:port>/<lab-location>/tree

To learn more about URLs in JupyterLab and Jupyter Notebook, visit starting JupyterLab.

1.2.1 --debug and --no-build

To debug the docker image being built, pass the --debug parameter:

jupyter-repo2docker --debug https://github.com/norvig/pytudes

This will print the generated Dockerfile, build it, and run it.

To see the generated Dockerfile without actually building it, pass --no-build to the commandline. This
Dockerfile output is for debugging purposes of repo2docker only - it can not be used by docker directly.

jupyter-repo2docker --no-build --debug https://github.com/norvig/pytudes

1.3 Configuration Files

repo2docker looks for configuration files in the repository being built to determine how to build it. In general,
repo2docker uses the same configuration files as other software installation tools, rather than creating new custom
configuration files.

A number of repo2docker configuration files can be combined to compose more complex setups.

repo2docker will look for configuration files in either:

• A folder named binder/ in the root of the repository.

• The root directory of the repository.

If the folder binder/ is located at the top level of the repository, only configuration files in the binder/
folder will be considered.

1.3. Configuration Files 5

https://github.com/norvig/pytudes
https://github.com/norvig/pytudes/blob/master/requirements.txt
http://jupyterlab.readthedocs.io/en/latest/getting_started/starting.html


repo2docker Documentation, Release 0.1

The binder examples organization on GitHub contains a list of sample repositories for common configurations that
repo2docker can build with various configuration files such as Python and R installation in a repository.

Below is a list of supported configuration files (roughly in the order of build priority):

• Dockerfile

• environment.yml

• requirements.txt

• REQUIRE

• install.R

• apt.txt

• setup.py

• postBuild

• runtime.txt

1.3.1 Dockerfile

In the majority of cases, providing your own Dockerfile is not necessary as the base images provide core functionality,
compact image sizes, and efficient builds. We recommend trying the other configuration files before deciding to use
your own Dockerfile.

With Dockerfiles, a regular Docker build will be performed. If a Dockerfile is present, all other configuration files
will be ignored.

See the Binder Documentation for best-practices with Dockerfiles.

1.3.2 environment.yml

environment.yml is the standard configuration file used by Anaconda, conda, and miniconda that lets you install
Python packages. You can also install files from pip in your environment.yml as well. Our example environ-
ment.yml shows how one can specify a conda environment for repo2docker.

You can also specify which Python version to install in your built environment with environment.yml. By default,
repo2docker installs Python 3.6 with your environment.yml unless you include the version of Python in the
file. conda supports Python versions 3.6, 3.5, 3.4, and 2.7. repo2docker support is best with Python 3.6, 3.5,
and 2.7. If you include a Python version in a runtime.txt file in addition to your environment.yml, your
runtime.txt will be ignored.

1.3.3 requirements.txt

This specifies a list of Python packages that should be installed in your environment. Our requirements.txt example
on GitHub shows a typical requirements file.

1.3.4 REQUIRE

This specifies a list of Julia packages. Repositories with a REQUIRE file must also contain an environment.yml
file. To see an example of a Julia repository with REQUIRE and environment.yml, visit binder-examples/julia-

6 Chapter 1. Site Contents

https://github.com/binder-examples
https://mybinder.readthedocs.io/en/latest/dockerfile.html
https://github.com/binder-examples/python-conda_pip/blob/master/environment.yml
https://github.com/binder-examples/python-conda_pip/blob/master/environment.yml
https://github.com/binder-examples/requirements/blob/master/requirements.txt
https://github.com/binder-examples/julia-python
https://github.com/binder-examples/julia-python


repo2docker Documentation, Release 0.1

python.

1.3.5 install.R

This is used to install R libraries pinned to a specific snapshot on MRAN. To set the date of the snapshot add a
runtime.txt. For an example install.R file, visit our example install.R file.

1.3.6 apt.txt

A list of Debian packages that should be installed. The base image used is usually the latest released version of Ubuntu.

We use apt.txt, for example, to install LaTeX in our example apt.txt for LaTeX.

1.3.7 setup.py

To install your repository like a Python package, you may include a setup.py file. repo2docker installs setup.py
files by running pip install -e ..

While one can specify dependencies in setup.py, repo2docker requires configuration files such as
environment.yml or requirements.txt to install dependencies during the build process.

1.3.8 postBuild

A script that can contain arbitrary commands to be run after the whole repository has been built. If you want this to be
a shell script, make sure the first line is `#!/bin/bash.

An example use-case of postBuild file is JupyterLab’s demo on mybinder.org. It uses a postBuild file in a
folder called binder to prepare their demo for binder.

start

A script that can contain simple commands to be run at runtime (as an ENTRYPOINT
<https://docs.docker.com/engine/reference/builder/#entrypoint> to the docker container). If you want this to be
a shell script, make sure the first line is `#!/bin/bash. The last line must be `exec "$@"` equivalent.

Use this to set environment variables that software installed in your container expects to be set. This script is executed
each time your binder is started and should at most take a few seconds to run.

If you only need to run things once during the build phase use postBuild.

1.3.9 runtime.txt

This allows you to control the runtime of Python or R.

To use python-2.7: add python-2.7 in runtime.txt file. The repository will run in a virtualenv with Python 2 installed.
To see a full example repository, visit our Python2 example. Python versions in ‘‘runtime.txt‘‘ are ignored when
environment.yml is present in the same folder.

repo2docker uses R libraries pinned to a specific snapshot on MRAN. You need to have a runtime.txt file that is
formatted as r-<YYYY>-<MM>-<DD>, where YYYY-MM-DD is a snapshot at MRAN that will be used for installing
libraries.

To see an example R repository, visit our R example in binder-examples.

1.3. Configuration Files 7

https://github.com/binder-examples/julia-python
https://github.com/binder-examples/julia-python
https://mran.microsoft.com/documents/rro/reproducibility
https://github.com/binder-examples/r/blob/master/install.R
https://github.com/binder-examples/latex/blob/master/apt.txt
https://github.com/jupyterlab/jupyterlab-demo/blob/master/binder/postBuild
https://github.com/binder-examples/python2_runtime/blob/master/runtime.txt
https://mran.microsoft.com/documents/rro/reproducibility
https://github.com/binder-examples/r/blob/master/runtime.txt


repo2docker Documentation, Release 0.1

1.4 Frequently Asked Questions (FAQ)

A collection of frequently asked questions with answers. If you have a question and have found an answer, send a PR
to add it here!

1.4.1 How should I specify another version of Python 3?

One can specify a Python version in the environment.yml file of a repository.

1.4.2 Can I add executable files to the user’s PATH?

Yes! With a :ref:postBuild file, you can place any files that should be called from the command line in the folder
~/.local/. This folder will be available in a user’s PATH, and can be run from the command line (or as a subsequent
build step.)

1.4.3 How do I set environment variables?

Use the -e or --env flag for each variable that you want to define.

For example jupyter-repo2docker -e VAR1=val1 -e VAR2=val2 ...

1.4.4 Can I use repo2docker to bootstrap my own Dockerfile?

No, you can’t.

If you pass the --debug flag to repo2docker, it outputs the intermediate Dockerfile that is used to build the
docker image. While it is tempting to copy this as a base for your own Dockerfile, that is not supported & in most
cases will not work. The --debug output is just our intermediate generated Dockerfile, and is meant to be built in a
very specific way. Hence the output of --debug can not be built with a normal docker build -t . or similar
traditional docker command.

Check out the binder-examples GitHub organization for example repositories you can copy & modify for your own
use!

1.5 Using repo2docker as part of your Continuous Integration

We’ve created for you the continuous-build repository so that you can push a Docker container to Docker Hub directly
from a Github repository that has a Jupyter notebook. Here are instructions to do this.

1.5.1 Getting Started

Today you will be doing the following:

1. Fork and clone the continuous-build Github repository to obtain the hidden .circleci folder.

2. creating an image repository on Docker Hub

3. connecting your repository to CircleCI

4. push, commit, or create a pull request to trigger a build.

8 Chapter 1. Site Contents

https://github.com/jupyter/repo2docker/blob/master/repo2docker/detectors.py#L381
https://github.com/jupyter/repo2docker/blob/master/repo2docker/detectors.py#L381
http://github.com/binder-examples/
https://www.github.com/binder-examples/continuous-build/
https://docs.docker.com/
https://hub.docker.com/


repo2docker Documentation, Release 0.1

You don’t need to install any dependencies on your host to build the container, it will be done on a continuous
integration server, and the container built and available to you to pull from Docker Hub.

Step 1. Clone the Repository

First, fork the continuous-build Github repository to your account, and clone the branch.

git clone https://www.github.com/<username>/continuous-build # or git clone
git@github.com:<username>/continuous-build.git

Step 2. Choose your Configuration

The hidden folder .circleci/config.yml has instructions for CircleCI to automatically discover and build your
repo2docker jupyter notebook container. The default template provided in the repository in this folder will do the
most basic steps, including:

1. clone of the repository with the notebook that you specify

2. build

3. push to Docker Hub

This repository aims to provide templates for your use. If you have a request for a new template, please let us know.
We will add templates as they are requested to do additional tasks like test containers, run nbconvert, etc.

Thus, if I have a repository named myrepo and I want to use the default configuration on circleCI, I would copy it
there from the continuous-build folder. In the example below, I’m creating a new folder called “myrepo” and
then copying the entire folder there.

mkdir -p myrepo cp -R continuous-build/.circleci myrepo/

You would then logically create a Github repository in the “myrepo” folder, add the circleci configuration folder, and
continue on to the next steps.

cd myrepo git init git add .circleci

Step 3. Docker Hub

Go to Docker Hub, log in, and click the big blue button that says “create repository” (not an automated build). Choose
an organization and name that you like (in the traditional format <ORG>/<NAME>), and remember it! We will be
adding it, along with your Docker credentials, to be encrypted CircleCI environment variables.

Step 4. Connect to CircleCI

If you navigate to the main app page you should be able to click “Add Projects” and then select your repository. If you
don’t see it on the list, then select a different organization in the top left. Once you find the repository, you can click
the button to “Start Building” and accept the defaults.

Before you push or trigger a build, let’s set up the following environment variables. Also in the project interface on
CirleCi, click the gears icon next to the project name to get to your project settings. Under settings, click on the
“Environment Variables” tab. In this section, you want to define the following:

1. CONTAINER_NAME should be the name of the Docker Hub repository you just created.

2. DOCKER_TAG is the tag you want to use. If not defined, will use first 10 characters of commit.

3. DOCKER_USER and DOCKER_PASS should be your credentials (to allowing pushing)

1.5. Using repo2docker as part of your Continuous Integration 9

https://www.github.com/binder-examples/continuous-build/
https://www.github.com
mailto:git@github.com
https://circleci.com/dashboard/
https://www.github.com/binder-examples/continuous-build/issues/
https://hub.docker.com/
https://circleci.com/dashboard/


repo2docker Documentation, Release 0.1

4. REPO_NAME should be the full Github url (or other) of the repository with the notebook. This doesn’t have to
coincide with the repository you are using to do the build (e.g., “myrepo” in our example).

If you don’t define the CONTAINER_NAME it will default to be the repository where it is building from, which you
should only do if the Docker Hub repository is named equivalently. If you don’t define either of the variables from
step 3. for the Docker credentials, your image will build but not be pushed to Docker Hub. Finally, if you don’t define
the REPO_NAME it will again use the name of the repository defined for the CONTAINER_NAME.

Step 5. Push Away, Merrill!

Once the environment variables are set up, you can push or issue a pull request to see circle build the workflow.
Remember that you only need the .circleci/config.yml and not any other files in the repository. If your
notebook is hosted in the same repository, you might want to add these, along with your requirements.txt, etc.

Tip: By default, new builds on CircleCI will not build for pull requests and you can change this default in the
settings. You can easily add filters (or other criteria and actions) to be performed during or after the build by editing
the .circleci/config.yml file in your repository.

Step 5. Use Your Container!

You should then be able to pull your new container, and run it! Here is an example:

docker pull <ORG>/<NAME> docker run -it –name repo2docker -p 8888:8888 <ORG>/<NAME>
jupyter notebook –ip 0.0.0.0

For a pre-built working example, try the following:

docker pull vanessa/repo2docker docker run -it –name repo2docker -p 8888:8888 vanessa/repo2docker
jupyter notebook –ip 0.0.0.0

You can then enter the url and token provided in the browser to access your notebook. When you are done and need
to stop and remove the container:

docker stop repo2docker docker rm repo2docker

1.6 Design

The repo2docker buildpacks are inspired by Heroku’s Build Packs. The philosophy for the repo2docker buildpacks
includes:

• using common configuration files for familiar installation and packaging tools

• allowing configuration files to be combined to compose more complex setups

• specifying default locations for configuration files (the repository’s root directory or .binder directory)

When designing repo2docker and adding to it in the future, the developers are influenced by two primary use
cases. The use cases for repo2docker which drive most design decisions are:

1. Automated image building used by projects like BinderHub

2. Manual image building and running the image from the command line client, jupyter-repo2docker, by
users interactively on their workstations

10 Chapter 1. Site Contents

https://devcenter.heroku.com/articles/buildpacks
http://github.com/jupyterhub/binderhub


repo2docker Documentation, Release 0.1

1.6.1 Deterministic output

The core of repo2docker can be considered a deterministic algorithm. When given an input directory which has a
particular repository checked out, it deterministically produces a Dockerfile based on the contents of the directory. So
if we run repo2docker on the same directory multiple times, we get the exact same Dockerfile output.

This provides a few advantages:

1. Reuse of cached built artifacts based on a repository’s identity increases efficiency and reliability. For example,
if we had already run repo2docker on a git repository at a particular commit hash, we know we can just re-
use the old output, since we know it is going to be the same. This provides massive performance & architectural
advantages when building additional tools (like BinderHub) on top of repo2docker.

2. We produce Dockerfiles that have as much in common as possible across multiple repositories, enabling better
use of the Docker build cache. This also provides massive performance advantages.

1.6.2 Reproducibility and version stability

Many ingredients go into making an image from a repository:

1. version of the base docker image

2. version of repo2docker itself

3. versions of the libraries installed by the repository

repo2docker controls the first two, the user controls the third one. The current policy for the version of the base
image is that we will keep pace with Ubuntu releases until we reach the next release with Long Term Support (LTS).
We currently use Artful Aardvark (17.10) and the next LTS version will be Bionic Beaver (18.04).

The version of repo2docker used to build an image can influence which packages are installed by default and
which features are supported during the build process. We will periodically update those packages to keep step with
releases of Jupyter Notebook, JupyterLab, etc. For packages that are installed by default but where you want to control
the version we recommend you specify them explicitly in your dependencies.

1.6.3 Unix principles “do one thing well”

repo2docker should do one thing, and do it well. This one thing is:

Given a repository, deterministically build a docker image from it.

There’s also some convenience code (to run the built image) for users, but that’s separated out cleanly. This allows
easy use by other projects (like BinderHub).

There is additional (and very useful) design advice on this in the Art of Unix Programming which is a highly recom-
mended quick read.

1.6.4 Composability

Although other projects, like s2i, exist to convert source to Docker images, repo2docker provides the additional
functionality to support composable environments. We want to easily have an image with Python3+Julia+R-3.2 envi-
ronments, rather than just one single language environment. While generally one language environment per container
works well, in many scientific / datascience computing environments you need multiple languages working together
to get anything done. So all buildpacks are composable, and need to be able to work well with other languages.

1.6. Design 11

https://en.wikipedia.org/wiki/Deterministic_algorithm
http://www.faqs.org/docs/artu/ch01s06.html
https://github.com/openshift/source-to-image


repo2docker Documentation, Release 0.1

1.6.5 Pareto principle (The 80-20 Rule)

Roughly speaking, we want to support 80% of use cases, and provide an escape hatch (raw Dockerfiles) for the other
20%. We explicitly want to provide support only for the most common use cases - covering every possible use case
never ends well.

An easy process for getting support for more languages here is to demonstrate their value with Dockerfiles that other
people can use, and then show that this pattern is popular enough to be included inside repo2docker. Remember
that ‘yes’ is forever (very hard to remove features!), but ‘no’ is only temporary!

1.7 Architecture

This is a living document talking about the architecture of repo2docker from various perspectives.

1.7.1 Buildpack

The buildpack concept comes from Heroku and Ruby on Rails’ Convention over Configuration doctrine.

Instead of the user specifying a complete specification of exactly how they want their environment to be, they can
focus only on how their environment differs from a conventional environment. This means instead of deciding ‘should
I get Python from Apt or pyenv or ?’, user can just specify ‘I want python-3.6’. Usually, specifying a runtime and list
of libraries with explicit versions is all that is needed.

In repo2docker, a Buildpack does the following things:

1. Detect if it can handle a given repository

2. Build a base language environment in the docker image

3. Copy the contents of the repository into the docker image

4. Assemble a specific environment in the docker image based on repository contents

5. Push the built docker image to a specific docker registry (optional)

6. Run the build docker image as a docker container (optional)

Detect

When given a repository, repo2docker first has to determine which buildpack to use. It takes the following steps to
determine this:

1. Look at the ordered list of BuildPack objects listed in Repo2Docker.buildpacks traitlet. This is pop-
ulated with a default set of buildpacks in most-specific-to-least-specific order. Other applications using this can
add / change this using traditional traitlet configuration mechanisms.

2. Calls the detect method of each BuildPack object. This method assumes that the repository is present in
the current working directory, and should return True if the repository is something that it should be used for.
For example, a BuildPack that uses conda to install libraries can check for presence of an environment.
yml file and say ‘yes, I can handle this repository’ by returning True. Usually buildpacks look for presence
of specific files (requirements.txt, environment.yml, install.R, etc) to determine if they can
handle a repository or not.

3. If no BuildPack returns true, then repo2docker will use the default BuildPack (defined in
Repo2Docker.default_buildpack traitlet).

12 Chapter 1. Site Contents

https://devcenter.heroku.com/articles/buildpacks
http://rubyonrails.org/doctrine/#convention-over-configuration
http://traitlets.readthedocs.io/en/stable/


repo2docker Documentation, Release 0.1

1.7.2 Build base environment

Once a buildpack is chosen, it builds a base environment that is mostly the same for various repositories built with
the same buildpack.

For example, in CondaBuildPack, the base environment consists of installing miniconda and basic notebook pack-
ages (from repo2docker/buildpacks/conda/environment.yml). This is going to be the same for most
repositories built with CondaBuildPack, so we want to use docker layer caching as much as possible for perfor-
mance reasons. Next time a repository is built with CondaBuildPack, we can skip straight to the copy step (since
the base environment docker image layers have already been built and cached).

The get_build_scripts and get_build_script_files methods are primarily used for this.
get_build_scripts can return arbitrary bash script lines that can be run as different users, and
get_build_script_files is used to copy specific scripts (such as a conda installer) into the image to be run as
pat of get_build_scripts. Code in either has following constraints:

1. You can not use the contents of repository in them, since this happens before the repository is copied
into the image. For example, pip install -r requirements.txt will not work, since there’s no
requirements.txt inside the image at this point. This is an explicit design decision, to enable better layer
caching.

2. You may, however, read the contents of the repository and modify the scripts emitted based on that! For example,
in CondaBuildPack, if there’s Python 2 specified in environment.yml, a different kind of environment
is set up. The reading of the environment.yml is performed in the BuildPack itself, and not in the scripts
returned by get_build_scripts. This is fine. BuildPack authors should still try to minimize the variants
created in this fashion, to optimize the build cache.

1.7.3 Copy repository contents

The contents of the repository are copied unconditionally into the Docker image, and made available for all further
commands. This is common to most BuildPacks, and the code is in the build method of the BuildPack base
class.

1.7.4 Assemble repository environment

The assemble stage builds the specific environment that is requested by the repository. This usually means in-
stalling required libraries specified in a format native to the language (requirements.txt, environment.yml,
REQUIRE, install.R, etc).

Most of this work is done in get_assemble_scripts method. It can return arbitrary bash script lines that can be
run as different users, and has access to the repository contents (unlike get_build_scripts). The docker image
layers produced by this usually can not be cached, so less restrictions apply to this than to get_build_scripts.

At the end of the assemble step, the docker image is ready to be used in various ways!

1.7.5 Push

Optionally, repo2docker can push a built image to a docker registry. This is done as a convenience only (since you
can do the same with a docker push after using repo2docker only to build), and implemented in Repo2Docker.
push method. It is only activated if using the --push commandline flag.

1.7. Architecture 13

https://conda.io/miniconda.html
https://thenewstack.io/understanding-the-docker-cache-for-faster-builds/
https://docs.docker.com/registry/


repo2docker Documentation, Release 0.1

1.7.6 Run

Optionally, repo2docker can run the built image and allow the user to access the Jupyter Notebook running inside
by default. This is also done as a convenience only (since you can do the same with docker run after using
repo2docker only to build), and implemented in Repo2Docker.run. It is activated by default unless the --no-run
commandline flag is passed.

1.8 Adding a new buildpack to repo2docker

A new buildpack is needed when a new language or a new package manager should be supported. Existing buildpacks
are a good model for how new buildpacks should be structured.

1.8.1 Criteria to balance and consider

Criteria to balance are:

1. Maintenance burden on repo2docker.

2. How easy it is to use a given setup without support from repo2docker natively. There are two escape hatches
here - postBuild and Dockerfile.

3. How widely used is this language / package manager? This is the primary tradeoff with point (1). We (the
Binder / Jupyter team) want to make new formats as little as possible, so ideally we can just say “X repositories
on binder already use this using one of the escape hatches in (2), so let us make it easy and add native support”.

1.8.2 Adding libraries or UI to existing buildpacks

Note that this doesn’t apply to adding additional libraries / UI to existing buildpacks. For example, if we had an R
buildpack and it supported IRKernel, it is much easier to just support RStudio / Shiny with it, since those are library
additions instead of entirely new buildpacks.

14 Chapter 1. Site Contents


	Site Contents

